Extracorporeal Shock-Wave Therapy in the Experimental Rat Osteoarthritis with Osteoporosis

  • Qianyuan Wang The Second Department of orthopedics of Wuwei people's Hospital
  • Haijun Liu The Second Department of orthopedics of Wuwei people's Hospital
  • Kui Chen Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science
  • Gengmei Xing Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science
  • Gengyan Xing The Third Medical center of the General Hospital of the Chinese people’s Liberation Army
Keywords: Osteoarthritis, Osteoporosis, Extracorporeal Shockwave Therapy, Subchondral Bone

Abstract

Purpose: Ustilizing the osteoarthritis(OA) model rats with osteoporosis(OP) evaluate and anticipate the effect of extracorporeal shockwave therapy (ESWT) in various aspects to coexisting of OA and OP in elderly women. Methods: Thirty-six female Sprague-Dawley rats were selected to make model of OPOA through surgery. Firstly, OP model were marked by the surgery of OVX, and were selected through micro-CT. Then, these OP model rats were treated by the surgery of ACL+MM. Finally, OPOA models were comfirmed by the hologiexamination. These model rats were divided into OPOA and OPOA + ESWT (n=12/group). Rats in the sham rats (n=12) were randomly selection from the group that were without treated by surgery. After ESWT, biomechanical analysis, micro-CT analysis, hologiexamination and immunohistochemical assay were utilized to evaluate the therapeutic effect. Mineralisation and alkaline phosphatase (ALP) in osteoblasts was analyzed to speculate the possible therapeutic mechanism of ESWT to OPOA. Results: Results of biomechanical analysis and hologiexamination show that ESWT could prevent further degeneration of articular cartilage. Micro-CT analysis and immunohistochemical assay demonstrate that the treatment could improve the microstructure of subchondral bone. Meanwhile, ESWT may improve the proliferation ability or activity of osteoblasts including in subchondral bone of OPOA rats in vivo. Conclusion: Our research suggests that ESWT prevented cartilage damage progression in the development of OPOA through intervening to degradation of subchondral bone.

References

Woolf, AD. & Pfleger, B. Burden of major musculoskeletal conditions. Bulletin of the World Health Organization 81, 646-656 (2003).

Herrero-Beaumont, G., Roman-Blas, JA., Castañeda, S. & Jimenez, SA. in Seminars in arthritis and rheumatism. 71-80 (Elsevier).

Consensus, N. Development panel on osteoporosis: prevention, diagnosis and therapy. J Am Med Assoc 285 (2001).

Bultink, IE. & Lems, WF. Osteoarthritis and osteoporosis: what is the overlap? Current rheumatology reports 15, 328, doi:10.1007/s11926-013-0328-0 (2013).

Foss, M. & Byers, P. Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Annals of the rheumatic diseases 31, 259 (1972).

Sambrook, P. & Naganathan, V. What is the relationship between osteoarthritis and osteoporosis? Baillières Clinical Rheumatology 11, 695-710 (1997).

Calvo, E. et al. Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthritis & Cartilage 15, 69-77 (2007).

Zhu, S. et al. Alendronate protects against articular cartilage erosion by inhibiting subchondral bone loss in ovariectomized rats. Bone 53, 340-349, doi:10.1016/j.bone.2012.12.044 (2013).

Bellido, M. et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis and cartilage 19, 1228-1236, doi:10. 1016/ j.joca.2011.07.003 (2011).

Zhang, LZ. et al. Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis. Arthritis care & research 64, 960-967, doi:10.1002/acr.21640 (2012).

Castaneda, S., Roman-Blas, JA., Largo, R. & Herrero-Beaumont, G. Subchondral bone as a key target for osteoarthritis treatment. Biochemical pharmacology 83, 315-323, doi:10.1016/j.bcp.2011.09.018 (2012).

Varady, NH. & Grodzinsky, AJ. Osteoarthritis year in review 2015: mechanics. Osteoarthritis and cartilage 24, 27-35, doi:10.1016/j.joca.2015.08.018 (2016).

Chu, CH., Yen, YS., Chen, PL. & Wen, CY. Repair of articular cartilage in rabbit osteochondral defects promoted by extracorporeal shock wave therapy. Shock Waves 25, 205-214, doi:10.1007/s00193-014-0510-y (2014).

Goldring, MB. & Berenbaum, F. Emerging targets in osteoarthritis therapy. Current opinion in pharmacology 22, 51-63, doi:10.1016/j.coph.2015.03.004 (2015).

Rannou, F., Pelletier, JP. & Martel-Pelletier, J. Efficacy and safety of topical NSAIDs in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Seminars in Arthritis & Rheumatism 45, S28–S33 (2015).

Bagi, CM., Berryman, E., Zakur, DE., Wilkie, D. & Andresen, CJ. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA. Arthritis research & therapy 17, 1-16 (2015).

Mani-Babu, S., Morrissey, D., Waugh, C., Screen, H. & Barton, C. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. The American journal of sports medicine 43, 752-761, doi:10.1177/0363546514531911 (2015).

Alves, EM., Angrisani, AT. & Santiago, MB. The use of extracorporeal shock waves in the treatment of osteonecrosis of the femoral head: a systematic review. Clinical rheumatology 28, 1247-1251, doi:10.1007/s10067-009-1231-y (2009).

Ji, Q., Wang, P. & He, C. Extracorporeal shockwave therapy as a novel and potential treatment for degenerative cartilage and bone disease: Osteoarthritis. A qualitative analysis of the literature. Progress in biophysics and molecular biology 121, 255-265, doi:10.1016/j.pbiomolbio.2016.07.001 (2016).

Mittermayr, R. et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair and Regeneration 20, 456-465 (2012).

Tam, KF., Cheung, WH., Lee, KM., Qin, L. & Leung, KS. Shockwave exerts osteogenic effect on osteoporotic bone in an ovariectomized goat model. Ultrasound in medicine & biology 35, 1109-1118, doi:10.1016/ j.ultrasmedbio. 2009.01.001 (2009).

Wang, CJ. et al. Extracorporeal shockwave shows regression of osteoarthritis of the knee in rats. The Journal of surgical research 171, 601-608, doi:10.1016/j.jss.2010.06.042 (2011).

Zhao, Z. et al. Extracorporeal shock-wave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondrocyte apoptosis. Archives of orthopaedic and trauma surgery 132, 1547-1553, doi:10.1007/s00402-012-1586-4 (2012).

Iura, A. et al. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts. PloS one 10, e0141345, doi:10.1371/ journal.pone.0141345 (2015).

ÖZtemÜR, Z. Comparing Extracorporeal Shock Wave and Hyaluronic Acid on Rabbit Cartilage Defect Model. Turkish Journal of Medical Sciences, doi:10.3906/sag-1208-2 (2013).

Hofmann, A. et al. Extracorporeal shock wave-mediated changes in proliferation, differentiation, and gene expression of human osteoblasts. Journal of Trauma and Acute Care Surgery 65, 1402-1410 (2008).

Bokhari, R., Mohamed, S. & Lau, S. Effects of orthosiphon stamineus on osteoporosis in ovariectomized rat model. Osteoarthritis and cartilage 24, S133-S134 (2016).

Lee, MY. et al. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model. Molecules 21, 149 (2016).

Wang, CJ., Huang, CY., Hsu, SL., Chen, JH. & Cheng, JH. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals. Arthritis research & therapy 16, R139, doi:10.1186/ar4601 (2014).

Wang CJ, Huang CY, Hsu SL, Chen JH, Cheng JH. Extracorporeal shockwave therapy in osteoporotic osteoarthritis of the knee in rats: an experiment in animals. Arthritis Res Ther. 2014;16(4):R139. Published 2014 Jul 3. doi:10.1186/ ar4601.

Wang., CJ. et al. Extracorporeal shockwave therapy shows chondroprotective effects in osteoarthritic rat knee. Vol. 13 1153-1158 (2011).

Botter, SM. et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis & Rheumatism 63, 2690-2699 (2011).

Lane, NE. et al. OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthritis and cartilage 19, 478-482, doi:10.1016/j.joca. 2010. 09.013 (2011).

Tamma, R. & Snotarnicola, DE. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound in medicine & biology 35, 2093-2100 (2009).

Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis & Cartilage 18, 24-33 (2010).

Thibbotuwawa., N. et al. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage. (2015).

Burr, D. B. The importance of subchondral bone in osteoarthrosis. Current Opinion in Rheumatology 10, 256-262 (1998).

Radin, E., Paul, I. & Rose, R. Role of mechanical factors in pathogenesis of primary osteoarthritis. The Lancet 299, 519-522 (1972).

Calvo, E. et al. Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthritis and cartilage 15, 69-77, doi:10.1016/j.joca.2006.06.006 (2007).

Iijima, H. et al. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis and cartilage 23, 1563-1574, doi:10.1016/j.joca.2015.04.015 (2015).

Thibbotuwawa, N. et al. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage. Applied Physics Letters 107, 103701, doi:10.1063/1.4929498 (2015).

Qin., J. et al. Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect induced osteoarthritis rat model. (2014).

Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nature reviews. Molecular cell biology 13, 27-38, doi:10.1038/nrm3254 (2011).

Wang, CJ. et al. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats. The Journal of surgical research 178, 196-205, doi:10.1016/j.jss.2012.01.010 (2012).

Ochiai, N. et al. Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats. Osteoarthritis and cartilage 15, 1093-1096, doi:10.1016/j.joca.2007.03.011 (2007).

Chang, KV., Chen, SY., Chen, WS., Tu, YK. & Chien, KL. Comparative Effectiveness of Focused Shock Wave Therapy of Different Intensity Levels and Radial Shock Wave Therapy for Treating Plantar Fasciitis: A Systematic Review and Network Meta-Analysis. Archives of Physical Medicine & Rehabilitation 93, 1259-1268 (2012).

Published
2022-07-14
Section
Original Research Article