Updates on Neuronavigation: Emerging tools for tumor resection

  • Anjali Patel College of Medicine, University of Florida
  • Drashti Patel College of Medicine, University of Florida
  • Raja Al-Bahou College of Medicine, University of Florida
  • Rajvi Thakkar College of Medicine, University of Florida
  • Ivelina Kioutchoukova College of Medicine, University of Florida
  • Marco Foreman College of Medicine, University of Florida
  • Devon Foster College of Medicine, Florida International University
  • Brandon Lucke-Wold Department of Neurosurgery, University of Florida
Keywords: DTI tractography, 4D-digital subtraction angiography (DSA), spatial resolutions, 3D maps, tumor tissue, aneurysms, AVM

Abstract

Multiple studies have been conducted to properly elucidate the various tools available to help enhance the resection of tumor tissue, aneurysms, and arteriovenous malformations (AVM). Diffusion tensor imaging (DTI) tractography is useful in providing a map of the tumor borders, allowing the optimal preservation of function and structure of specific regions of the brain. During neurosurgery, especially craniotomies, the possibility of the brain shifting due to swelling or gravity is high. Thus, tools for intraoperative imaging such as high-frequency linear array ultrasound transducers and doppler ultrasonography are utilized for high resolution images and detecting frequency shifts. 4D-digital subtraction angiography (DSA) is another technique used to create spatial resolutions and 3D maps for aneurysms. These similar techniques can also be utilized to assess the integrity of white matter in AVM. By implementing effective evaluation strategies, healthcare professionals can make informed decisions regarding treatment options, preventive measures, and long-term care plans tailored to individual patients.

References

Yu CS, Li KC, Xuan Y, et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. European Journal of Radiology 2005; 56(2): 197–204. doi: 10.1016/j.ejrad.2005.04.010

Dubey A, Kataria R, Sinha V. Role of diffusion tensor imaging in brain tumor surgery. Asian Journal of Neurosurgery 2018; 13(2): 302–306. doi: 10.4103/ajns.AJNS_226_16

Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007; 61(5): 935–949. doi: 10.1227/01.neu.0000303189.80049.ab

Zhu FP, Wu JS, Song YY, et al. Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 2012; 71(6): 1170–1184. doi: 10.1227/NEU.0b013e318271bc61

Hervey-Jumper SL, Berger MS. Evidence for improving outcome through extent of resection. Neurosurgery Clinics of North America 2019; 30(1): 85–93. doi: 10.1016/j.nec.2018.08.005

Mato D, Velasquez C, Gómez E, et al. Predicting the extent of resection in low-grade glioma by using intratumoral tractography to detect eloquent fascicles within the tumor. Neurosurgery 2021; 88(2): E190–E202. doi: 10.1093/neuros/nyaa463

Kuhnt D, Bauer MH, Becker A, et al. Intraoperative visualization of fiber tracking based reconstruction of language pathways in glioma surgery. Neurosurgery 2012; 70(4): 911–920. doi: 10.1227/NEU.0b013e318237a807

Papadopoulos MC, Saadoun S, Binder DK, et al. Molecular mechanisms of brain tumor edema. Neuroscience 2004; 129(4): 1011–1020. doi: 10.1016/j.neuroscience.2004.05.044

Schonberg T, Pianka P, Hendler T, et al. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. NeuroImage 2006; 30(4): 1100–1111. doi: 10.1016/j.neuroimage.2005.11.015

Parmar H, Sitoh YY, Yeo TT. Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. Journal of Computer Assisted Tomography 2004; 28(4): 551–556. doi: 10.1097/00004728-200407000-00019

Guye M, Parker GJ, Symms M, et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. NeuroImage 2003; 19(4): 1349–1360. doi: 10.1016/s1053-8119(03)00165-4

Sanvito F, Caverzasi E, Riva M, et al. fMRI-targeted high-angular resolution diffusion mr tractography to identify functional language tracts in healthy controls and glioma patients. Frontiers in neuroscience 2020; 14: 225. doi: 10.3389/fnins.2020.00225

Teh B. Image-guided stereotactic body radiation therapy (SBRT): An emerging treatment paradigm with a new promise in radiation oncology. Biomedical Imaging and Intervention Journal 2007; 3(1): e5. doi: 10.2349/biij.3.1.e5

Maruyama K, Kamada K, Shin M, et al. Optic radiation tractography integrated into simulated treatment planning for Gamma Knife surgery. Journal of Neurosurgery 2007; 107(4): 721–726. doi: 10.3171/JNS-07/10/0721

Koga T, Maruyama K, Kamada K, et al. Outcomes of diffusion tensor tractography-integrated stereotactic radiosurgery. International Journal of Radiation Oncology, Biology, Physics 2012; 82(2): 799–802. doi: 10.1016/j.ijrobp.2010.11.046

Ko AL, Tong APS, Mossa-Basha M, et al. Effects of laser interstitial thermal therapy for mesial temporal lobe epilepsy on the structural connectome and its relationship to seizure freedom. Epilepsia 2022; 63(1): 176–189. doi: 10.1111/epi.17059

Sherman JH, Hoes K, Marcus J, et al. Neurosurgery for brain tumors: Update on recent technical advances. Current Neurology and Neuroscience Reports 2011; 11(3): 313–319. doi: 10.1007/s11910-011-0188-9

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians 2019; 69(1): 7–34. doi: 10.3322/caac.21551

Watts C, Sanai N. Surgical approaches for the gliomas. Handbook of Clinical Neurology 2016; 134: 51–69. doi: 10.1016/B978-0-12-802997-8.00004-9

Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. Journal of Neuro-Oncology 2016; 130(2): 269–282. doi: 10.1007/s11060-016-2110-4

Kumthekar P, Raizer J, Singh S. Low-grade glioma. Cancer Treatment and Research 2015; 163: 75–87. doi: 10.1007/978-3-319-12048-5_5

Fernández-de Thomas RJ, Munakomi S, De Jesus O. Craniotomy. In: StatPearls. StatPearls Publishing; 2023.

Kobyakov GL, Lubnin AY, Kulikov AS, et al. Awake craniotomy. Zhurnal Voprosy Neirokhirurgii Imeni N. N. Burdenko 2016; 80(1): 107–116. doi: 10.17116/neiro2016801107-116

Sastry R, Bi WL, Pieper S, et al. Applications of ultrasound in the resection of brain tumors. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging 2017; 27(1): 5–15. doi: 10.1111/jon.12382

White T, Zavarella S, Jarchin L, et al. Combined brain mapping and compact intraoperative MRI for brain tumor resection. Stereotactic and Functional Neurosurgery 2018; 96(3): 172–181. doi: 10.1159/000488991

Coburger J, Scheuerle A, Thal DR, et al. Linear array ultrasound in low-grade glioma surgery: Histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochirurgica 2015; 157(2): 195–206. doi: 10.1007/s00701-014-2314-3

Motomura K, Natsume A, Iijima K, et al. Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas. Journal of Neurosurgery 2017; 127(4): 790–797. doi: 10.3171/2016.9.JNS16152

Rao G. Intraoperative MRI and maximizing extent of resection. Neurosurgery Clinics of North America 2017; 28(4): 477–485. doi: 10.1016/j.nec.2017.05.003

Rahmathulla G, Recinos PF, Kamian K, et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: A review of its current clinical applications. Oncology 2014; 87(2): 67–82. doi: 10.1159/000362817

Sanai N. Emerging operative strategies in neurosurgical oncology. Current Opinion in Neurology 2012; 25(6): 756–766. doi: 10.1097/WCO.0b013e32835a2574

Carpentier A, McNichols RJ, Stafford RJ, et al. Laser thermal therapy: Real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers in Surgery and Medicine 2011; 43(10): 943–950. doi: 10.1002/lsm.21138

Shim KW, Park EK, Kim DS, Choi JU. Neuroendoscopy: Current and future perspectives. Journal of Korean Neurosurgical Society 2017; 60(3): 322–326. doi: 10.3340/jkns.2017.0202.006

Rigante L, Borghei-Razavi H, Recinos PF, Roser F. An overview of endoscopy in neurologic surgery. Cleveland Clinic Journal of Medicine 2019; 86(10): 16ME–24ME. doi: 10.3949/ccjm.86.me.18142

Barber SM, Rangel-Castilla L, Baskin D. Neuroendoscopic resection of intraventricular tumors: a systematic outcomes analysis. Minimally Invasive Surgery 2013; 2013: 898753. doi: 10.1155/2013/898753

ACRA Cut. Smart drill. Available online: https://www.acracut.com/perforators.html#:~:text=ACRA%2DCUT%20is%20the%20only,of%20automatic%2Dreleasing%20cranial%20perforators (accessed on 18 August 2023).

Zhu P, Zhu JJ. Tumor treating fields: A novel and effective therapy for glioblastoma: Mechanism, efficacy, safety and future perspectives. Chinese Clinical Oncology 2017; 6(4): 41. doi: 10.21037/cco.2017.06.29

Kirson ED, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Research 2004; 64(9): 3288–3295. doi: 10.1158/0008-5472.can-04-0083

Kirson ED, Dbalý V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(24): 10152–10157. doi: 10.1073/pnas.0702916104

Tuszynski JA, Wenger C, Friesen DE, Preto J. An overview of sub-cellular mechanisms involved in the action of TTFields. International Journal of Environmental Research and Public Health 2016; 13(11): 1128. doi: 10.3390/ijerph13111128

Ostrom QT, Gittleman H, de Blank PM, et al. American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 2016; 18(Suppl 1): i1–i50. doi: 10.1093/neuonc/nov297

Robins HI, Nguyen HN, Field A, et al. Molecular evolution of a glioblastoma controlled with tumor treating fields and concomitant temozolomide. Frontiers in Oncology 2018; 8: 451. doi: 10.3389/fonc.2018.00451

Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: A randomised phase III trial of a novel treatment modality. European Journal of Cancer 2012; 48(14): 2192–2202. doi: 10.1016/j.ejca.2012.04.011

Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017; 318(23): 2306–2316. doi: 10.1001/jama.2017.18718

Kingery K. Brain tumor ‘Pied Piper’ device gains breakthrough status. Available online: https://pratt.duke.edu/about/news/tumor-monorail-breakthrough (accessed on 6 February 2019).

Rigby S. ‘Tumour Monorail’ on fast track for human trials. Available online: https://www.sciencefocus.com/the-human-body/tumour-monorail-on-the-fast-track-for-human-trials/?utm_source=twitter&utm_medium=Duke+University (accessed on 6 February 2019).

Jain A, Betancur M, Patel GD, et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nature Materials 2014; 13(3): 308–316. doi: 10.1038/nmat3878

Helekar SA, Voss HU. Transcranial brain stimulation with rapidly spinning high-field permanent magnets. IEEE Access 2016; 4: 2520–2528. doi: 10.1109/ACCESS.2016.2568739

Helekar SA, Convento S, Nguyen L, et al. The strength and spread of the electric field induced by transcranial rotating permanent magnet stimulation in comparison with conventional transcranial magnetic stimulation. Journal of Neuroscience Methods 2018; 309: 153–160. doi: 10.1016/j.jneumeth.2018.09.002

Baskin DS, Sharpe MA, Nguyen L, Helekar SA. Case report: End-stage recurrent glioblastoma treated with a new noninvasive non-contact oncomagnetic device. Frontiers in Oncology 2021; 11: 708017. doi: 10.3389/fonc.2021.708017

Helekar S, Hambarde S, Baskin D, Sharpe M. EXTH-13. Potent anticancer effects of a new wearable noninvasive oncomagnetic device: Cellular mechanisms of action. Neuro-Oncology 2020; 22(Supplement_2): ii89. doi: 10.1093/neuonc/noaa215.367

Toth G, Cerejo R. Intracranial aneurysms: Review of current science and management. Vascular Medicine 2018; 23(3): 276–288. doi: 10.1177/1358863X18754693

Schievink WI. Intracranial aneurysms. The New England Journal of Medicine 1997; 336(1): 28–40. doi: 10.1056/NEJM199701023360106

Jersey AM, Foster DM. Cerebral aneurysm. In: StatPearls. StatPearls Publishing; 2023.

Zanaty M, Chalouhi N, Tjoumakaris SI, et al. Aneurysm geometry in predicting the risk of rupture. A review of the literature. Neurological Research 2014; 36(4): 308–313. doi: 10.1179/1743132814Y.0000000327

Rinkel GJ, Ruigrok YM. Preventive screening for intracranial aneurysms. International Journal of Stroke: Official Journal of the International Stroke Society 2022; 17(1): 30–36. doi: 10.1177/17474930211024584

Vernooij MW, Ikram MA, Tanghe HL, et al. Incidental findings on brain MRI in the general population. The New England Journal of Medicine 2007; 357(18): 1821–1828. doi: 10.1056/NEJMoa070972

Adams WM, Laitt RD, Jackson A. The role of MR angiography in the pretreatment assessment of intracranial aneurysms: A comparative study. AJNR. American Journal of Neuroradiology 2000; 21(9): 1618–1628.

Duan H, Huang Y, Liu L, et al. Automatic detection on intracranial aneurysm from digital subtraction angiography with cascade convolutional neural networks. Biomedical Engineering Online 2019; 18(1): 110. doi: 10.1186/s12938-019-0726-2

Cieściński J, Serafin Z, Strześniewski P, et al. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay. Polish Journal of Radiology 2012; 77(2): 47–53. doi: 10.12659/pjr.882970

Davis B, Royalty K, Kowarschik M, et al. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR. American Journal of Neuroradiology 2013; 34(10): 1914–1921. doi: 10.3174/ajnr.A3529

Andreucci M, Solomon R, Tasanarong A. Side effects of radiographic contrast media: Pathogenesis, risk factors, and prevention. BioMed Research International 2014; 2014: 741018. doi: 10.1155/2014/741018

van Rooij WJ, Sprengers ME, de Gast AN, et al. 3D rotational angiography: The new gold standard in the detection of additional intracranial aneurysms. AJNR. American Journal of Neuroradiology 2008; 29(5): 976–979. doi: 10.3174/ajnr.A0964

Ishihara H, Kato S, Akimura T, et al. Angiogram-negative subarachnoid hemorrhage in the era of three dimensional rotational angiography. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 2007; 14(3): 252–255. doi: 10.1016/j.jocn.2006.01.011

Richter G, Engelhorn T, Struffert T, et al. Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms. AJNR. American Journal of Neuroradiology 2007; 28(10): 1902–1908. doi: 10.3174/ajnr.A0697

Ishida F, Kawaguchi K, Mizuno M, et al. The accuracy and usefulness of 3D-DSA and 3D-CT angiography for cerebral aneurysms. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences 2001; 7(Suppl 1): 181–186. doi: 10.1177/15910199010070S128

Li Z, Huo G, Feng Y, Ma Z. Application of virtual reality based on 3D-CTA in intracranial aneurysm surgery. Journal of Healthcare Engineering 2021; 2021: 9913949. doi: 10.1155/2021/9913949

Yu JF, Pung L, Minami H, et al. Virtual 2D angiography from four-dimensional digital subtraction angiography (4D-DSA): A feasibility study. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences 2021; 27(2): 307–313. doi: 10.1177/1591019920961604

Lang S, Gölitz P, Struffert T, et al. 4D DSA for dynamic visualization of cerebral vasculature: A single-center experience in 26 cases. AJNR. American Journal of Neuroradiology 2017; 38(6): 1169–1176. doi: 10.3174/ajnr.A5161

Sandoval-Garcia C, Yang P, Schubert T, et al. Comparison of the diagnostic utility of 4D-DSA with conventional 2D- and 3D-DSA in the diagnosis of cerebrovascular abnormalities. AJNR. American Journal of Neuroradiology 2017; 38(4): 729–734. doi: 10.3174/ajnr.A5137

Khursheed F, Rohlffs F, Suzuki S, et al. Artifact quantification and tractography from 3T MRI after placement of aneurysm clips in subarachnoid hemorrhage patients. BMC Medical Imaging 2011; 11: 19. doi: 10.1186/1471-2342-11-19

Colby GP, Coon AL, Tamargo RJ. Surgical management of aneurysmal subarachnoid hemorrhage. Neurosurgery Clinics of North America 2010; 21(2): 247–261. doi: 10.1016/j.nec.2009.10.003

Dujovny M, Agner C, Ibe O, Perlin A. Self-closing aneurysm clip: A historical review. Neurological Research 2010; 32(10): 1011–1020. doi: 10.1179/016164110X12807570509817

Olsrud J, Lätt J, Brockstedt S, et al. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: Dependence on field strength (1.5 and 3 T) and imaging parameters. Journal of Magnetic Resonance Imaging: JMRI 2005; 22(3): 433–437. doi: 10.1002/jmri.20391

Shellock FG, Valencerina S. In vitro evaluation of MR imaging issues at 3T for aneurysm clips made from MP35N: Findings and information applied to 155 additional aneurysm clips. AJNR. American Journal of Neuroradiology 2010; 31(4): 615–619. doi: 10.3174/ajnr.A1918

Shellock FG, Kanal E. Aneurysm clips: Evaluation of MR imaging artifacts at 1.5 T. Radiology 1998; 209(2): 563–566. doi: 10.1148/radiology.209.2.9807590

Romner B, Olsson M, Ljunggren B, et al. Magnetic resonance imaging and aneurysm clips. Magnetic properties and image artifacts. Journal of Neurosurgery 1989; 70(3): 426–431. doi: 10.3171/jns.1989.70.3.0426

Khursheed F, Rohlffs F, Suzuki S, et al. Artifact quantification and tractography from 3T MRI after placement of aneurysm clips in subarachnoid hemorrhage patients. BMC Medical Imaging 2011; 11: 19. doi: 10.1186/1471-2342-11-19

Halter M, Wanderer S, Grüter B, et al. Interrater and intrarater agreement superior for three-dimensional digital subtraction angiography (3D-DSA) over 2D-DSA classification for detecting remnants after intracranial aneurysm clipping, a GRRAS reliability and agreement study. Acta Neurochirurgica 2022; 164(8): 2173–2179. doi: 10.1007/s00701-022-05156-3

Wong SC, Nawawi O, Ramli N, Abd Kadir KA. Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm. Academic Radiology 2012; 19(6): 701–707. doi: 10.1016/j.acra.2012.02.012

Lang S, Hoelter P, Birkhold AI, et al. Quantitative and qualitative comparison of 4D-DSA with 3D-DSA using computational fluid dynamics simulations in cerebral aneurysms. AJNR. American Journal of Neuroradiology 2019; 40(9): 1505–1510. doi: 10.3174/ajnr.A6172

Lawton MT, Rutledge WC, Kim H, et al. Brain arteriovenous malformations. Nature Reviews Disease Primers 2015; 1: 15008. doi: 10.1038/nrdp.2015.8

Can A, Gross BA, Du R. The natural history of cerebral arteriovenous malformations. Handbook of Clinical Neurology 2017; 143: 15–24. doi: 10.1016/B978-0-444-63640-9.00002-3

Rutledge C, Cooke DL, Hetts SW, Abla AA. Brain arteriovenous malformations. Handbook of Clinical Neurology 2021; 176: 171–178. doi: 10.1016/B978-0-444-64034-5.00020-1

Wooderchak-Donahue WL, Johnson P, McDonald J, et al. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. European Journal of Human Genetics: EJHG 2018; 26(10): 1521–1536. doi: 10.1038/s41431-018-0196-1

Chen CJ, Ding D, Derdeyn CP, et al. Brain arteriovenous malformations: A review of natural history, pathobiology, and interventions. Neurology 2020; 95(20): 917–927. doi: 10.1212/WNL.0000000000010968

Asif K, Leschke J, Lazzaro MA. Cerebral arteriovenous malformation diagnosis and management. Seminars in Neurology 2013; 33(5): 468–475. doi: 10.1055/s-0033-1364212

Shaligram SS, Winkler E, Cooke D, Su H. Risk factors for hemorrhage of brain arteriovenous malformation. CNS Neuroscience & Therapeutics 2019; 25(10): 1085–1095. doi: 10.1111/cns.13200

Okada T, Miki Y, Kikuta K, et al. Diffusion tensor fiber tractography for arteriovenous malformations: Quantitative analyses to evaluate the corticospinal tract and optic radiation. AJNR. American Journal of Neuroradiology 2007; 28(6): 1107–1113. doi: 10.3174/ajnr.A0493

Kikuta K, Takagi Y, Nozaki K, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery 2006; 58(2): 331–337. doi: 10.1227/01.NEU.0000195017.82776.90

Yamada K, Kizu O, Ito H, et al. Tractography for arteriovenous malformations near the sensorimotor cortices. AJNR. American Journal of Neuroradiology 2005; 26(3): 598–602.

Bendok BR, El Tecle NE, El Ahmadieh TY, et al. Advances and innovations in brain arteriovenous malformation surgery. Neurosurgery 2014; 74(Suppl 1): S60–S73. doi: 10.1227/NEU.0000000000000230

Tayebi Meybodi A, Lawton MT. Modern classification and outcome predictors of surgery in patients with brain arteriovenous malformations. Journal of Neurosurgical Sciences 2018; 62(4): 454–466. doi: 10.23736/S0390-5616.18.04394-1

Campbell PG, Jabbour P, Yadla S, Awad IA. Emerging clinical imaging techniques for cerebral cavernous malformations: A systematic review. Neurosurgical Focus 2010; 29(3): E6. doi: 10.3171/2010.5.FOCUS10120

Khalil M, Siddiqui K, Baig A, Shamim MS. Role of diffusion tensor imaging for brain tumour resection. JPMA. The Journal of the Pakistan Medical Association 2022; 72(8): 1667–1669. doi: 10.47391/JPMA.22-88

Filippi M, Agosta F. Diffusion tensor imaging and functional MRI. Handbook of Clinical Neurology 2016; 136: 1065–1087. doi: 10.1016/B978-0-444-53486-6.00056-9

Bérubé J, McLaughlin N, Bourgouin P, et al. Diffusion tensor imaging analysis of long association bundles in the presence of an arteriovenous malformation. Journal of Neurosurgery 2007; 107(3): 509–514. doi: 10.3171/JNS-07/09/0509

Waqas M, Siddiqui A, Mubarak F, Enam SA. Diffusion tensor imaging for ruptured cerebral arteriovenous malformation. Cureus 2017; 9(9): e1721. doi: 10.7759/cureus.1721

Yeo SS, Jang SH. Delayed neural degeneration following gamma knife radiosurgery in a patient with an arteriovenous malformation: A diffusion tensor imaging study. NeuroRehabilitation 2012; 31(2): 131–135. doi: 10.3233/NRE-2012-0780

Shahbandi A, Sattari SA, Haghshomar M, et al. Application of diffusion tensor-based tractography in treatment of brain arteriovenous malformations: A systematic review. Neurosurgical Review 2023; 46(1): 115. doi: 10.1007/s10143-023-02017-0

Salama GR, Heier LA, Patel P, et al. Diffusion weighted/tensor imaging, functional mri and perfusion weighted imaging in glioblastoma-foundations and future. Frontiers in Neurology 2018; 8: 660. doi: 10.3389/fneur.2017.00660

Gavin CG, Ian Sabin H. Stereotactic diffusion tensor imaging tractography for Gamma Knife radiosurgery. Journal of Neurosurgery 2016; 125(Suppl 1): 139–146. doi: 10.3171/2016.8.GKS161032

Del Bene M, Carone G, Porto E, et al. Neurophysiology-guided laser interstitial thermal therapy: A synergistic approach for motor function preservation. technical note. World Neurosurgery 2022; 168: 165–172. doi: 10.1016/j.wneu.2022.09.121

Zhang J, Zhuang DX, Yao CJ, et al. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection. Journal of Neurosurgery 2016; 124(6): 1585–1593. doi: 10.3171/2015.6.JNS142651

Ruedinger KL, Harvey EC, Schafer S, et al. Optimizing the quality of 4D-DSA temporal information. AJNR. American Journal of Neuroradiology 2019; 40(12): 2124–2129. doi: 10.3174/ajnr.A6290

Lang S, Gölitz P, Struffert T, et al. 4D DSA for dynamic visualization of cerebral vasculature: A single-center experience in 26 cases. AJNR. American Journal of Neuroradiology 2017; 38(6): 1169–1176. doi: 10.3174/ajnr.A5161

Published
2023-12-27
Section
Original Research Article