Synthesis, characterisation and electrochemical studies of Co2+ doped GdAlO3 for sensor applications

  • P K Jisha1 1 Department of Physics, New Horizon College of Engineering, Bangalore-560103, India http://orcid.org/0000-0003-1958-9524
  • Ramachandra Naik1 1 Department of Physics, New Horizon College of Engineering, Bangalore-560103, India
  • S C Prashantha2 2 Research Center, Department of Science, East West Institute of Technology ,VTU, Bangaluru-560091, India
  • H Nagabhushana3 3 Rao Center for Advanced materials, Tumkur University, Tumkur-572103, India
  • H P Nagaswarupa1 1 Department of Physics, New Horizon College of Engineering, Bangalore-560103, India
  • C R Ravikumar1 1 Department of Physics, New Horizon College of Engineering, Bangalore-560103, India
Ariticle ID: 90
237 Views, 3 PDF Downloads
Keywords: Combustion, Fourier transform infrared, Diffuse Reflectance, Cyclic voltammetry, Electrochemical impedance spectroscopy

Abstract

The structural and electrochemical properties of cobalt (Co2+) doped GdAlO3 nanoparticles have been investigated. Structure analysis was carried out using X-ray diffraction (XRD) and Transmission electron microscope technique (TEM). The electrochemical properties of the GdAlO3:Co2+ (3 mol %) was measured using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements using 1 M KOH electrolyte and 1 M KOH electrolyte with 2 ml of Paracetamol. The cyclic voltammetry measurements indicate that the reversibility of the electrode reaction increases while adding 2 ml of Paracetamol. Whereas, the EIS measurements reveal that a reduction in the charge transfer resistance increases capacitance of the GdAlO3:Co2+ electrode.

Author Biography

P K Jisha1, 1 Department of Physics, New Horizon College of Engineering, Bangalore-560103, India
Physics, Assistant Professor

References

J.B.Goodenough,Y.Kim, Chem. Mater. 22 (2010) 587.

H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21 (2009) 4593.

L Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48 (2010) 781–787.

J. Baker, Energy Policy 36 (2008) 4368–4373.

T. Christen, M.W. Carlen, Theory of Ragone plots, J. Power Sources 91 (2000) 210–216.

G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797–828.

Y. Zhang, Y. Gui, X. Wu, H. Feng, A. Zhang, L. Wang, et al., Int. J. Hydrog. Energy 34 (2009) 2467–2470.

L. Qu, Y.J.B. Baek, L. Dai, ACS Nano 4 (2010) 1321.

G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797–828.

S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, J. Mater. Chem. 22 (2012) 767.

L. Huang, G. Guo, Y. Liu, Q. Chang, Y. Xie, J. Disp. Technol. 8 (2012) 373–376.

Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1 (2012) 107–131

Ejikeme Raphael Ezeigwe, Michelle T.T. Tan, Poi Sim Khiew, Chiu Wee Siong,

Ceramics International 41 (2015) 715–724

X. Duan, M. Pan, F. Yu, D. Yuan, J. Alloys Compd. 509 (2011) 1079–1083.

D. Dhak, P. Pramanik, J. Am. Ceram. Soc. 89 (2006)1014-1021.

Amit Sinha , B.P. Sharma, P. Gopalan , Journal of Alloys and Compounds 536 (2012) 204–209 .

S.C. Prashantha, B.N. Lakshminarasappa, Fouran Singh. Curr. Appl. Phys. 11 (2011) 1273–1277.

Zimmerman AH,Effa, PK, J Electrochem Soc .131(1984)709

Wang P., Shanghai inst. of Ceramics, Chinese Academy of science, Shanghai, china, ICCD grant-in-Aid,(1994).

P. Klug, L.E. Alexander, X-ray Diffraction Proce-dure, Wiley, New York, 1954.

L. Shen, C. Hu, Y. Sakka, Q. Huang, , J. Phys. D Appl. Phys. 45 (2012 ) 215302.

Meza Octavio, Villabona-E. G.,Torres L. A, De-sirena H., Rodríguez-Lopez J. L.,and Perez E., J. Phys.chem118(2014)1390-1396.

K. Djebaili, Z. Mekhalif, A. Boumaza, A.X.P.S. Djelloul,, J. Spectrosc. 2015 (2015). 868109.

J.H. Ryu, B.G. Choi, J.W. Yoon, K.B. Shim, K. Machi, K. Hamada, J. Lumin. 124 (2007) 67-70.

A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. S53 (5) (2007) 18-22.

P. Baraldi, G. Davolio, An electrochemical and spectral study of the nickel oxide electrode, Mater. Chem. Phys. 21 (1989) 143.

P.V. Kamath, G.N. Subbanna, Electroless nickel hydroxide: synthesis and characterization, J. Appl. Electrochem. 22 (1992) 478–482.

X. Cao, J. Wei, Y. Luo, Z. Zhou, Y. Zhang, Spherical nickel hydroxide composite electrode, Int. J. Hydrogen Energy 25 (2000) 643–647.

I. Krejci, P. Vanysek, Effect of zinc and iron ions on the electrochemistry of nickel oxide electrode: slow cyclic voltammetry, J. Power Sources 47 (1994) 79–88.

C.R. Ravi kumar, P. Kotteeswaran, V. Bheema Raju, A. Murugan, M.S. Santosh, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anil Kumar, M.S. Shivakumar, Journal of Energy Storage 9 (2017) 12–24

P.R. Bueno, C. Gabrielli, H. Perrot, Electrochim. Acta 53 (2008) 5533–5539.

P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, New York, 2007, pp. 312 (chapter 10).

M. Yen Ho, P. Sim Khiew, D. Isa, Funct. Mater. Lett. 7 (2014) 1440012.

M.R. Sarpoushi, M. Nasibi, M.A. Golozar, M.R. Shishesaz, M.R. Borhani, S. Noroozi, Mater. Sci. Semicond. Process. 26 (2014) 374–378.

Published
2018-09-05
Section
Articles