Developing alternatives to hydrocarbon via pyrolysis and gasification of industry residual biomass

  • Tourn Silvana Centro de Investigación en Química Orgánica Biológica (FRRe, UTN), lnstituto de Modelado e Innovación Tecnológica (IMIT, CONICET)
  • Saires Paula Instituto de Investigaciones en Catálisis y Petroquímica “José Miguel Parera”, INCAPE (UNL-CONICET)
  • Bertero Melisa Instituto de Investigaciones en Catálisis y Petroquímica “José Miguel Parera”, INCAPE (UNL-CONICET)
  • Falco Marisa Instituto de Investigaciones en Catálisis y Petroquímica “José Miguel Parera”, INCAPE (UNL-CONICET)
  • Chamorro Ester Centro de Investigación en Química Orgánica Biológica (FRRe, UTN), lnstituto de Modelado e Innovación Tecnológica (IMIT, CONICET)
Ariticle ID: 3333
132 Views, 4 PDF Downloads
Keywords: lignocellulosic residues, pyrolysis, bio-oil, tar

Abstract

Pyrolysis and gasification are thermal treatment processes using biomass to produce biofuels that can replace fossil fuels in industrial boilers and furnaces. This paper discusses the potential utilization of four types of residual biomass highly produced in the Argentina Northeast (NEA) region, i.e., rice husk, an agricultural waste rich in cotton husk, carob sawdust, and spent red quebracho sawdust, as raw material. Pyrolysis liquid product yields were 34–51 wt% and char yields were 29–40 wt%; tar represented 16–23 wt%. For gasification, gas yields were between 45.6 wt% and 65.7 wt%; as for tar, it represented 2.4–14.1 wt% of initial biomass, and char yields were 31.4–40.3 wt%. Characterization of all products was performed to clarify their potential applications. Bio-oils, i.e., aqueous fractions of pyrolysis liquid products, have high water content (77–88 wt%), that is why they have lower density and viscosity than tars, oil fractions of pyrolysis liquids. However, chemical stability of bio-oils may vary, and their heating values are much lower than the heating values from tars. Based on these, it is possible to concluded that tar is the product with increased added value and higher energy properties. Efficiency of gasification and heating values of the gases obtained were high for waste rich in cotton husk and spent red quebracho sawdust, suggesting a good potential for the utilization in gasification processes. Additionally, char composition and properties for all biomasses, from both process, show that it is feasible to use them in several new applications.

Author Biography

Tourn Silvana, Centro de Investigación en Química Orgánica Biológica (FRRe, UTN), lnstituto de Modelado e Innovación Tecnológica (IMIT, CONICET)
 

References

Saucedo GI, Perucca R, Kurtz DB. The causes of the fires in early 2022 in the province of corrientes (Spanish). Ecología Austral 2023; 33(1): 273–284. doi: 10.25260/EA.23.33.1.0.2020

Mohan D, Pittman CU, Steele PH. Pyrolysis wood/biomass for bio-oil: A critical review. Energy Fuels 2006; 20(3): 848–889. doi: 10.1021/ef0502397

Bertero M. Catalytic Processing of Bio-Oils for Use as An Energy and Feedstock Source (Spanish) [PhD thesis]. Instituto de Investigaciones en Catálisis y Petroquímica (FIQ-UNL-CONICET); 2012.

Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews 2016; 57: 1126–1140. doi: 10.1016/j.rser.2015.12.185

Akbarian A, Andooz A, Kowsari E, et al. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresource Technology 2022; 362: 127774. doi: 10.1016/j.biortech.2022.127774

Moreira R, Bimbela F, Gil-Lalaguna N, et al. Clean syngas production by gasification of lignocellulosic char: State of the art and future prospects. Journal of Industrial and Engineering Chemistry 2021; 101: 1–20. doi: 10.1016/j.jiec.2021.05.040

Available online: http://hdl.handle.net/20.500.12272/4406 (accessed on 25 July 2023).

Larrañaga G. Introduction to Agricultural and Forestry Sciences, a First Approach to Reality (Spanish). Editorial de la Universidad Nacional de La Plata; 2014. doi: 10.35537/10915/35589

Delivand MK, Barz M, Garivait S. Overall analyses of using rice straw residues for power generation in Thailand-project feasibility and environmental GHG impacts assessment. Journal of Sustainable Energy & Environment Special Issue 2011; 39–46.

Kumar CES, Raju V. A study on replacement of cement with rice husk ash. International Journal of Civil Engineering and Technology (IJCIET) 2017; 8(1): 723–727.

FAO. Update of the biomass balance sheet for energy purposes in Argentina (Spanish). FAO; 2020. doi: 10.4060/ca8764es

Simplified Agricultural Information System (SISA) (Spanish). Available online: https://www.argentina.gob.ar/sites/default/files/inase_sisa_algodon_19_20.pdf (accessed on 25 July 2023).

Available online: https://www.unitan.net/es-quebracho.html (accessed on 25 July 2023).

Available online: https://www.silvateam.com/es/quienes-somos/la-empresa/indunor.html (accessed on 25 July 2023).

Dagnino EP, Chamorro ER, Romano SD, et al. Optimization of the pretreatment of prosopis nigra sawdust for the production of fermentable sugars. Bioresources 2013; 8(1): 499–514.

Oasmaa A, Peacocke C. A guide to physical property characterisation of biomass-derived fast pyrolysis liquids. Available online: https://publications.vtt.fi/pdf/publications/2001/P450.pdf (accessed on 25 July 2023).

Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and pichia stipitis-NCIM 3498. Bioresource Technology 2009; 100(3): 1214–1220. doi: 10.1016/j.biortech.2008.08.033

Dagnino EP, Felissia FE, Chamorro ER, Area MC. Studies on lignin extraction from rice husk by a soda-ethanol treatment: Kinetics, separation, and characterization of products. Chemical Engineering Research and Design 2018; 129: 209–216. doi: 10.1016/j.cherd.2017.10.026

Rizvi T, Pourkashanian M, Jones JM, et al. Prediction of biomass ash fusion behaviour by the use of detailed characterization methods coupled with thermodynamic analysis. Fuel 2015; 141: 275–284. doi: 10.1016/j.fuel.2014.10.021

Lachman J, Baláš M, Lisý M, et al. An overview of slagging and fouling indicators and their applicability to biomass fuels. Fuel Processing Technology 2021; 217: 106804. doi: 10.1016/j.fuproc.2021.106804

Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002; 81(8): 1051–1063. doi: 10.1016/S0016-2361(01)00131-4

Jain A, Goss J. Determination of reactor scaling factors for throatless rice husk gasifier. Biomass and Bioenergy 2000; 18(3): 249–256. doi: 10.1016/S0961-9534(99)00083-5

McKendry P. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 2002; 83(1): 37–46. doi: 10.1016/S0960-8524(01)00118-3

Hoang AT, Ong HC, Fattah IMR, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 2021; 223(1): 106997. doi: 10.1016/j.fuproc.2021.106997

Ke L, Wu Q, Zhou N, et al. Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods. Renewable and Sustainable Energy Reviews 2022; 165: 112607. doi: 10.1016/j.rser.2022.112607

Dagnino EP, Chamorro ER, Romano SD, et al. Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products 2013; 42: 363–368. doi: 10.1016/j.indcrop.2012.06.019

Liou TH, Yang CC. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials Science and Engineering: B 2011; 176(7): 521–529. doi: 10.1016/j.mseb.2011.01.007

Soni B, Karmee SK. Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel 2020; 271: 117570. doi: 10.1016/j.fuel.2020.117570

Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997; 76(5): 431–434. doi: 10.1016/S0016-2361(97)85520-2

Çaglar A, Demirbas A. Conversion of cotton cocoon shell to liquid products by pyrolysis. Energy Conversion and Management 2000; 41(16): 1749–1756. doi: 10.1016/S0196-8904(00)00016-9

Pütün AE. Biomass to bio-oil via fast pyrolysis of cotton straw and stalk. Energy Sources 2002; 24: 275–285. doi: 10.1080/009083102317243656

Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewble Energy 2018; 129: 695–716. doi: 10.1016/j.renene.2017.04.035

Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 2005; 544: 191–198. doi: 10.1016/j.aca.2005.01.041

De Souza MF, Magalhães WLE, Persegil MC. Silica derived from burned rice hulls. Materials Research 2002; 5(4): 467–474. doi: 10.1590/S1516-14392002000400012

Yu M, Temeche E, Indris S, Laine RM. Adjusting SiO2: C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si3N4 or Si2N2O composites. Green Chemistry 2021; 23(19): 7751–7762. doi: 10.1039/d1gc02084f

Smołka-Danielowska D, Jabłońska M. Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. International Journal of Environmental Science and Technology 2022; 1–14. doi: 10.1007/s13762-021-03506-9

Alderetes C. Bagasse boilers—Project, operation and maintenance (Spanish). Available online: https://es.scribd.com/document/356712953/Calderas-a-Bagazo-pdf# (accessed on 25 July 2023).

Bryś A, Bryś J, Kaleta A, et al. Wood biomass characterization by DSC or FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry 2016; 126: 27–35. doi: 10.1007/s10973-016-5713-2

Granada E, Míguez JL, Febrero L, et al. Development of an experimental technique for oil recovery during biomass pyrolysis. Renew Energy 2013; 60: 179–184. doi: 10.1016/j.renene.2013.05.010

Collar F, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 2014; 38: 594–608. doi: 10.1016/j.rser.2014.06.013

Alias N, Ibrahim N, Abd. Hamid MK, et al. Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. Malaysian Journal of Analytical Sciences 2014; 18(3): 705–710.

Aho A, Kumar N, Eränen K, et al. Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Journal of Molecular Sciences 2008; 9: 1665–1675. doi: 10.3390/ijms9091665

García-Pérez M, Chaala A, Pakdel H, et al. Vacuum pyrolysis of softwood and hardwood biomass: Comparison between product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis 2007; 78(1): 104–116. doi: 10.1016/j.jaap.2006.05.003

Mullen CA, Boateng A. Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis 2011; 90: 197–203. doi: 10.1016/j.jaap.2010.12.004

Pujro R, García J, Bertero M, et al. Review on reaction pathways in the catalytic upgrading of biomass pyrolysis liquids. Energy Fuels 2021; 35(21): 16943–16964. doi: 10.1021/acs.energyfuels.1c01931

Neves D, Thunman H, Matos A, et al. Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science 2011; 37(5): 611–630. doi: 10.1016/j.pecs.2011.01.001

Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007; 86(12–13): 1781–1788. doi: 10.1016/j.fuel.2006.12.013

Guedes RE, Luna AS, Torres AR. Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis 2018; 129: 134–149. doi: 10.1016/j.jaap.2017.11.019

Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 2007; 48(1): 87–92. doi: 10.1016/j.enconman.2006.05.010

Yogalakshmi KN, Sivashanmugam P, Kavitha S, et al. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere 2022; 286: 131824. doi: 10.1016/j.chemosphere.2021.131824

Aguado R, Olazar M, José MS, et al. Pyrolysis of sawdust in a conical spouted bed reactor. Yields and product composition. Industrial & Engineering Chemistry Research 2000; 39(6): 1925–1933. doi: 10.1021/ie990309v

Mullen CA, Boateng AA. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 2008; 22(3): 2104–2109. doi: 10.1021/ef700776w

Shen DK, Gu S, Bridgwater AV. Study on the pyrolytic behaviour of xylan–based hemicellulose using TG–FTIR and Py–GC–FTIR. Journal of Analytical and Applied Pyrolysis 2010; 87: 199–206. doi: 10.1016/j.jaap.2009.12.001

Montaña M, Casella ML, Lick ID. Bio-oil acidity enhancement processes: Acetic acid removal using alkaline earth oxides as catalysts (Spanish). Investigación Joven 2019; 6: 87–87.

Oasmaa A, Elliott DC, Korhonen J. Acidity of biomass fast pyrolysis bio-oils. Energy & Fuels 2010; 24(12): 6548–6554. doi: doi.org/10.1021/ef100935r

Mohammed HI, Garba K, Ahmed SI, Abubakar LG. Recent advances on strategies for upgrading biomass pyrolysis vapour to value-added bio-oils for bioenergy and chemicals. Sustainable Energy Technologies and Assessments 2023; 55: 102984. doi: 10.1016/j.seta.2022.102984

Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 2009; 100: 6496–6504. doi: 10.1016/j. biortech.2009.06.095.

Atzei D, Fermo P, Vecchi R, et al. Composition and origin of PM2.5 in mediterranean countryside. Environmental Pollution 2019; 246: 294–302. doi: 10.1016/j.envpol.2018.12.012

Dias IM, Cardoso TMG, Coltro WKT, Urban RC. Paper-based analytical devices with colorimetric detection for determining levoglucosan in atmospheric particulate matter. Atmospheric Environment 2019; 213: 463–469. doi: 10.1016/j.atmosenv.2019.06.040

Bennett NM, Helle SS, Duff SJB. Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource Technology 2009; 100(23): 6059–6063. doi: 10.1016/j.biortech.2009.06.067

Bhar R, Tiwari BR, Sarmah AK, et al. A comparative life cycle assessment of different pyrolysis-pretreatment pathways of wood biomass for levoglucosan production. Bioresource Technology 2022; 356: 127305. doi: 10.1016/j.biortech.2022.127305

Ansari KB, Arora JS, Chew JW, et al. Effect of temperature and transport on the yield and composition of pyrolysis-derived bio-oil from glucose. Energy & Fuels 2018; 32(5): 6008–6021. doi: 10.1021/acs.energyfuels.8b00852

Mettler MS, Vlachos DG, Dauenhauer PJ. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy & Environmental Science 2012; 5(7): 7797–7809. doi: 10.1039/C2EE21679E

Tsai WT, Lee MK, Chang JH, et al. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis. Bioresource Technology 2009; 100(9): 2650–2654. doi: 10.1016/j.biortech.2008.11.023

Chen T, Wu C, Liu R. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production. Bioresource Technology 2011; 102(19): 9236–9240. doi: 10.1016/j.biortech.2011.07.033

Primaz CT, Ribes-Greus A, Jacques RA. Valorization of cotton residues for production of bio-oil and engineered biochar. Energy 2021; 235: 121363. doi: 10.1016/j.energy.2021.121363

Ingram L, Mohan D, Bricka M, et al. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy & Fuels 2008; 22(1): 614–625. doi: 10.1021/ef700335k

Noriega P. Volatile compounds from non-oak woods traditionally used for wine aging and their effect on the volatile composition of wines: A review (Spanish). Available online: https://uvadoc.uva.es/bitstream/handle/10324/56012/TFG-L3165.pdf?sequence=1&isAllowed=y (accessed on 12 July 2023).

del Río JC, Rencoret J, Marques G, et al. Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. Journal of Agricultural and Food Chemistry 2008; 56: 9525–9534. doi: 10.1021/jf800806h

Rosado MJ, Rencoret J, Marques G, et al. Structural characteristics of the guaiacyl-rich lignins from rice (oryza sativa L.) husks and straw. Frontiers in Plant Science 2021; 12: 640475. doi: 10.3389/fpls.2021.640475

Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. Journal of Analytical and Applied Pyrolysis 2001; 58–59(2): 387–400. doi: 10.1016/S0165-2370(00)00173-X

Bayerbach R, Nguyen VD, Schurr U, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. Journal of Analytical and Applied Pyrolysis 2006; 77: 95–101. doi: 10.1016/j.jaap.2006.02.002

Bertero M, Sedran U. Immediate catalytic upgrading of soybean shell bio-oil. Energy 2016; 94(1): 171–179. doi: 10.1016/j.energy.2015.10.114

Muley PD, Henkel C, Abdollahi KK, et al. A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management 2016; 117(2): 273–280. doi: 10.1016/j.enconman.2016.03.041

Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004; 18(2): 590–598. doi: 10.1021/ef034067u

Xu Y, Wang Q, Hu X, et al. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy 2010; 35: 283–287. doi: 10.1016/j.energy.2009.09.020

Lehto J, Oasmaa A, Solantausta Y, et al. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Applied Energy 2014; 116: 178–190. doi: 10.1016/j.apenergy.2013.11.040

Huber G, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews 2006; 106: 4044–4098. doi: 10.1021/cr068360d

Bertero M, Sedran U. Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts. Bioresource Technology 2013; 135: 644–651. doi: 10.1016/j.biortech.2012.11.070

García JR, Bertero M, Falco M, Sedran U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Applied Catalysis A: General 2015; 503(25): 1–8. doi: 10.1016/j.apcata.2014.11.005

Bertero M, García JR, Falco M, Sedran U. Hydrocarbons from bio-oils: Performance of the matrix in FCC catalysts in the immediate catalytic upgrading of different raw bio-oils. Waste and Biomass Valorization 2017; 8(3): 933–948. doi: 10.1007/s12649-016-9624-z

Bertero M, García JR, Falco M, Sedran U. Conversion of cow manure pyrolytic tar under FCC conditions over modified equilibrium catalysts. Waste and Biomass Valorization 2019; 11: 2925–2933. doi: 10.1007/s12649-019-00588-y

Li C, Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification—An overview. Renewable and Sustainable Energy Reviews 2009; 13: 594–604. doi: 10.1016/j.rser.2008.01.009

Xin X, Dell K, Udugama IA, et al. Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. Journal of Cleaner Production 2021; 294: 125368. doi: 10.1016/j.jclepro.2020.125368

del Pozo C, Bartrolí J, Puy N, Fàbregas E. Separation of value-added chemical groups from bio-oil of olive mill waste. Industrial Crops and Products 2018; 125: 160–167. doi: 10.1016/j.indcrop.2018.08.062

Wei Q, Liu G, Wei X, et al. Influence of wood vinegar as leaves fertilizer on yield and quality of celery. Journal of China Agricultural University 2009; 14(1): 89–92.

Cáceres LA, McGarvey BD, Briens C, et al. Insecticidal properties of pyrolysis bio-oil from greenhouse tomato residue biomass. Journal of Analytical and Applied Pyrolysis 2015; 112: 333–340. doi: 10.1016/j.jaap.2015.01.003

Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews 2008; 12: 2092–2116. doi: 10.1016/j.rser.2007.04.008

Shah Z, Cataluña Veses R, Ceschi M, et al. Separation of phenol from bio-oil produced from pyrolysis of agricultural wastes. Modern Chemistry and Applications 2017; 5(1). doi: 10.4172/2329-6798.1000199

Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation. Separation and Purification Technology 2015; 152: 123–32. doi: 10.1016/j.seppur.2015.08.011

Ku CS, Mun SP. Characterization of pyrolysis tar derived from lignocellulosic biomass. Journal of Industrial and Engineering Chemistry 2006; 12: 853–861.

Bansode A, Barde M, Asafu-Adjaye O, et al. Synthesis of biobased novolac phenol–formaldehyde wood adhesives from biorefinery-derived lignocellulosic biomass. ACS Sustainable Chemistry & Engineering 2021; 9(33): 10990–11002. doi: 10.1021/acssuschemeng.1c01916

Zhang R, Wang H, You Z, et al. Optimization of bio-asphalt using bio-oil and distilled water. Journal of Cleaner Production 2017; 165: 281–289. doi: 10.1016/j.jclepro.2017.07.154

Li D, Chen J, Fan Y, et al. Biomass-tar-enabled nitrogen-doped highly ultramicroporous carbon as an efficient absorbent for CO2 capture. Energy & Fuels 2019; 33(9): 8927–8936. doi: 10.1021/acs.energyfuels.9b01638

Tian X, Zhang L, Li H, et al. Preparation of bio-oil-based polymer microspheres for adsorption Cu2+ and its adsorption behaviors. Journal of Dispersion Science and Technology 2020: 1–10. doi: 10.1080/01932691.2020.1727344

Huang YP, Hsi HC, Liu SC. Preparation of spherical activated phenol-formaldehyde beads from bamboo tar for adsorption of toluene. Journal of the Air & Waste Management Association 2013; 63(8): 977–983. doi: 10.1080/10962247.2013.804011

Zhang X, Chen Q, Zhang Q, et al. Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst. Journal of Analytical and Applied Pyrolysis 2018; 135: 60–66. doi: 10.1016/j.jaap.2018.09.020

Qu W, Xue Y, Gao Y, et al. Repolymerization of pyrolytic lignin for producing carbon fiber with improved properties. Biomass and Bioenergy 2016; 95: 19–26. doi: 10.1016/j.biombioe.2016.09.013

Taverna ME, Busatto CA, Lescano MR, et al. Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. Journal of Hazardous Materials 2018; 359: 139–147. doi 10.1016/j.jhazmat.2018.07.010

Taverna ME, Busatto CA, Saires PJ, et al. Bio-composite films based on alginate and rice husk tar microparticles loaded with eugenol for active packaging. Waste and Biomass Valorization 2022; 13(6): 3061–3070. doi: 10.1007/s12649-022-01679-z

Kawi S, Ashok J, Dewangan N, et al. Recent advances in catalyst technology for biomass tar model reforming: Thermal, plasma and membrane reactors. Waste and Biomass Valorization 2022; 13: 1–30. doi: 10.1007/s12649-021-01446-6

Yoon SJ, Son Y, Kim YK, Lee JG. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy 2012; 42: 163–167. doi: 10.1016/j.renene.2011.08.028

Molino A, Chianese S, Musmarra D. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 2016; 25: 10–25. doi: 10.1016/j.jechem.2015.11.005

Lin KS, Wang HP, Lin CJ, Juch CI. A process development for gasification of rice husk. Fuel Processing Technology 1998; 55(3): 185–192. doi: 10.1016/S0378-3820(98)00049-6

Rahim H, Ahmad S, Khan Z, Khan A. Field-based investigation of aged biochar coupled with summer legumes effect on wheat yield in Pakistan. Buletin Agroteknologi 2020; 1(1): 1–6. doi: 10.32663/ba.v1i1.1152

Published
2023-08-01
Section
Original research article