Existe-t-il un profil spécifique de perception du risque de COVID-19 chez les personnes atteintes d’un cancer ? une étude transversale
Is There a Specific Profile of COVID-19 Risk Perception among People with Cancer? A Cross-Sectional Study
Abstract
Aims: This study aimed to determine if people with cancer (PWC) exhibit a unique COVID-19 risk perception profile and identify psychosocial factors characterizing PWC who do not conform to the majority risk perception profile. Procedure: A cross-sectional online self-questionnaire study was conducted in France from April 25 to May 07, 2020, with a sample (n = 748) comprising PWC, individuals not currently receiving cancer treatment, and those without a history of cancer. Latent profiles of COVID-19 risk perception (PCRP) were established. Methods: A multivariate multinomial logistic regression was performed to assess the association between cancer status and PCRP membership. Characteristics of PWC across different profiles were compared. Results: Four profiles emerged, ranging from Low-Risk to High-Risk Perceivers. PWC were more likely to belong to the High-Risk Perceivers profile (aOR: 3.02; p < 0.001). PWC not conforming to this profile had a higher perceived socioeconomic level (PSL) (p < 0.05). The majority of PWC demonstrated a specific COVID-19 risk perception profile, mainly influenced by medical knowledge linking cancer to increased COVID-19 severity. PSL was a key determinant in shaping risk perception among PWC. Conclusion: Interventions targeting COVID-19 risk perception modification should consider these factors, with particular emphasis on addressing concerns related to SARS-CoV-2 infection.
Résumé
Objectifs : Cette étude visait à déterminer si les personnes atteintes d’un cancer (PAC) présentaient un profil unique de perception du risque COVID-19 et à identifier les facteurs psychosociaux caractérisant les PAC qui n’appartenaient pas au profil majoritaire de perception du risque. Procédure : Une étude transversale par auto-questionnaire en ligne a été menée en France du 25 avril au 7 mai 2020, avec un échantillon (n = 748) comprenant des PAC, des personnes ne recevant pas de traitement contre le cancer et des personnes n’ayant pas d’antécédents de cancer. Des profils latents de perception du risque COVID-19 (PLPR) ont été établis. Méthodes : Une régression logistique multinomiale multivariée a été réalisée pour évaluer l’association entre le statut de cancer et l’appartenance au PLPR. Les caractéristiques des PLPR selon les différents profils ont été comparées. Résultats : Quatre profils se sont dégagés, allant d’une perception faible du risque à une perception haute du risque. Les PAC étaient plus susceptibles d’appartenir au profil « Percepteurs à haut risque » (aOR : 3,02; p < 0,001). Les PAC ne correspondant pas à ce profil avaient un niveau socio-économique perçu plus élevé (p < 0,05). La majorité des PAC avaient un profil commun de perception du risque COVID-19, principalement influencé par les connaissances médicales désignant le cancer comme un facteur de risque d’avoir une COVID-19 grave. Le niveau socio- économique perçu était un facteur déterminant de la perception des risques parmi les PAC. Conclusion : Les interventions visant à modifier la perception du risque de COVID-19 devraient tenir compte de ces facteurs, en mettant particulièrement l’accent sur les préoccupations liées à l’infection par le SRAS-CoV-2.
References
2.WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available from: https://covid19.who.int/table. [Accessed 2022]. [Google Scholar]
3.The Lancet Oncology. Safeguarding cancer care in a post-COVID-19 world. Lancet Oncol. 2020;21(5):603. doi:10.1016/S1470-2045(20)30243-6. [Google Scholar] [PubMed] [CrossRef]
4.Ye Y, Wang J, Cai S, Fu X, Ji Y. Psychological distress of cancer patients caused by treatment delay during the COVID-19 pandemic in China: a cross-sectional study. Psychooncology. 2022;31(9):1607–15. [Google Scholar] [PubMed]
5.Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep. 2021;11(1):8562. doi:10.1038/s41598-021-88130-w. [Google Scholar] [PubMed] [CrossRef]
6.Attema AE, L’Haridon O, Raude J, Seror V. Beliefs and risk perceptions about COVID-19: evidence from two successive French representative surveys during lockdown. Front Psychol. 2021 [cited 2021 May 16];12:265. doi:10.3389/fpsyg.2021.619145. [Google Scholar] [PubMed] [CrossRef]
7.de Vries M, Claassen L, te Wierik MJM, van den Hof S, Brabers AEM, de Jong JD, et al. Dynamic public perceptions of the coronavirus disease crisis, the Netherlands, 2020. Emerg Infect Dis. 2021;27(4):1098–109. doi:10.3201/eid2704.203328. [Google Scholar] [PubMed] [CrossRef]
8.Siegrist M, Luchsinger L, Bearth A. The impact of trust and risk perception on the acceptance of measures to reduce COVID-19 cases. Risk Anal. 2021;41(5):787–800. [Google Scholar] [PubMed]
9.Trifiletti E, Shamloo SE, Faccini M, Zaka A. Psychological predictors of protective behaviours during the COVID-19 pandemic: theory of planned behaviour and risk perception. J Community Appl Soc Psychol. 2021. [Google Scholar]
10.Dryhurst S, Schneider CR, Kerr J, Freeman ALJ, Recchia G, van der Bles AM, et al. Risk perceptions of COVID-19 around the world. J Risk Res. 2020;23(7–8):994–1006. doi:10.1080/13669877.2020.1758193. [Google Scholar] [CrossRef]
11.Yıldırım M, Güler A. Factor analysis of the COVID-19 perceived risk scale: a preliminary study. Death Stud. 2020;48(5):585–598. [Google Scholar]
12.Rosi A, van Vugt FT, Lecce S, Ceccato I, Vallarino M, Rapisarda F, et al. Risk perception in a real-world situation (COVID-19how it changes from 18 to 87 years old. Front Psychol. 2021;12:528. doi:10.3389/fpsyg.2021.646558. [Google Scholar] [PubMed] [CrossRef]
13.Savadori L, Lauriola M. Risk perception and protective behaviors during the rise of the COVID-19 outbreak in Italy. Front Psychol. 2021;11:3822. doi:10.3389/fpsyg.2020.577331. [Google Scholar] [PubMed] [CrossRef]
14.Bruine de Bruin W. Age differences in COVID-19 risk perceptions and mental health: evidence from a National U.S. Survey conducted in March 2020. J Gerontol Ser B. 2021;76(2):e24–9. [Google Scholar]
15.Guastafierro E, Toppo C, Magnani FG, Romano R, Facchini C, Campioni R, et al. Older adults’ risk perception during the COVID-19 pandemic in lombardy region of Italy: a cross-sectional survey. J Gerontol Soc Work. 2021;64(6):585–98. [Google Scholar] [PubMed]
16.Pasion R, Paiva TO, Fernandes C, Barbosa F. The AGE effect on protective behaviors during the COVID-19 outbreak: Sociodemographic, perceptions and psychological accounts. Front Psychol. 2020;11:561785. doi:10.3389/fpsyg.2020.561785. [Google Scholar] [PubMed] [CrossRef]
17.Laires PA, Dias S, Gama A, Moniz M, Pedro AR, Soares P, et al. The association between chronic disease and serious COVID-19 outcomes and its influence on risk perception: survey study and database analysis. JMIR Public Health Surveill. 2021;7(1):e22794. doi:10.2196/22794. [Google Scholar] [PubMed] [CrossRef]
18.Leach CR, Kirkland EG, Masters M, Sloan K, Rees-Punia E, Patel AV, et al. Cancer survivor worries about treatment disruption and detrimental health outcomes due to the COVID-19 pandemic. J Psychosoc Oncol. 2021;39(3):347–65. [Google Scholar] [PubMed]
19.Patwary MM, Alam MA, Bardhan M, Disha AS, Haque MZ, Billah SM, et al. COVID-19 vaccine acceptance among low- and lower-middle-income countries: a rapid systematic review and meta-analysis. Vaccines. 2022;10(3):427. doi:10.3390/vaccines10030427. [Google Scholar] [PubMed] [CrossRef]
20.Zancu SA, Măirean C, Diaconu-Gherasim LR. The longitudinal relation between time perspective and preventive behaviors during the COVID-19 pandemic: the mediating role of risk perception. Curr Psychol. 2022 Apr 11 [cited 2022 Jun 25];21(5):571. doi:10.1007/s12144-022-03069-z. [Google Scholar] [PubMed] [CrossRef]
21.Cheli S, Lam WWT, Estapé T, Winterling J, Bahcivan O, Andritsch E, et al. Risk perception, treatment adherence, and personality during COVID-19 pandemic: an international study on cancer patients. Psychooncology. 2022;31(1):46–53. doi:10.1002/pon.5775. [Google Scholar] [PubMed] [CrossRef]
22.Chambon M, Dalege J, Elberse JE, van Harreveld F. A psychological network approach to attitudes and preventive behaviors during pandemics: a COVID-19 study in the United Kingdom and the Netherlands. Soc Psychol Personal Sci. 2021 Mar 23 [cited 2022 Jun 14];13(1):233–45. doi:10.1177/19485506211002420. [Google Scholar] [CrossRef]
23.Lesage FX, Martens-Resende S, Deschamps F, Berjot S. Validation of the general health questionnaire (GHQ-12) adapted to a work-related context. Open J Prev Med. 2011;1(2):44–8. doi:10.4236/ojpm.2011.12007. [Google Scholar] [CrossRef]
24.Haut Conseil de la Santé Publique. Coronavirus SARS-CoV-2: barrier and physical distancing measures for the general population. 2021 [cited 2021 Apr 22]. Available from: https://www.hcsp.fr/Explore.cgi/AvisRapportsDomaine?clefr=912. [Google Scholar]
25.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/. [Accessed 2021]. [Google Scholar]
26.Wickham H. ggplot2: elegant graphics for data analysis. Springer; 2016. [Google Scholar]
27.Kassambara A. ggpubr: “ggplot2” based publication ready plots. Available from: https://CRAN.R-project.org/package=ggpubr. [Accessed 2020]. [Google Scholar]
28.Sjoberg DD, Curry M, Hannum M, Larmarange J, Whiting K, Zabor EC. Presentation ready data summary and analytic result tables. Available from: https://CRAN.R-project.org/package=gtsummary. [Accessed 2021]. [Google Scholar]
29.Kim S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods. 2015;22(6):665–74. doi:10.5351/CSAM.2015.22.6.665. [Google Scholar] [PubMed] [CrossRef]
30.Rosenberg JM, Beymer PN, Anderson DJ, Van Lissa CJ, Schmidt JA. tidyLPA: an R package to easily carry out latent profile analysis (LPA) using open-source or commercial software. J Open Source Softw. 2019;3(30):978. doi:10.21105/joss.00978. [Google Scholar] [CrossRef]
31.Liu H, Lafferty J, Wasserman L. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J Mach Learn Res. 2009;10(10):2295–328. [Google Scholar]
32.Jiang H, Fei X, Liu H, Roeder K, Lafferty J, Wasserman L, et al. huge: High-Dimensional Undirected Graph Estimation. Available from: https://CRAN.R-project.org/package=huge. [Accessed 2021]. [Google Scholar]
33.Conover WJ, Iman RL. Multiple-comparisons procedures. Informal report. Los Alamos National Lab. (LANLLos Alamos, NM (United States). 1979 Feb [cited 2022 Mar 5]. Report No. LA-7677-MS. Available from: https://www.osti.gov/biblio/6057803. [Google Scholar]
34.Pohlert T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. 2021. Available from: https://CRAN.R-project.org/package=PMCMRplus. [Google Scholar]
35.Venables WN, Ripley BD. Modern applied statistics. 4th ed. New York: Springer; 2002. [Google Scholar]
36.Fagerland MW, Hosmer DW, Bofin AM. Multinomial goodness-of-fit tests for logistic regression models. Stat Med. 2008;27(21):4238–53. doi:10.1002/sim.3202. [Google Scholar] [PubMed] [CrossRef]
37.Jay M. generalhoslem: Goodness of Fit Tests for Logistic Regression Models. Available from: https://CRAN.R-project.org/package=generalhoslem. [Accessed 2019]. [Google Scholar]
38.Spurk D, Hirschi A, Wang M, Valero D, Kauffeld S. Latent profile analysis: a review and “how to” guide of its application within vocational behavior research. J Vocat Behav. 2020;120(1):103445. doi:10.1016/j.jvb.2020.103445. [Google Scholar] [CrossRef]
39.Slovic P. Perception of risk. Science. 1987;236(4799):280–5. doi:10.1126/science.3563507. [Google Scholar] [PubMed] [CrossRef]
40.Yang Z, Xin Z. Heterogeneous risk perception amid the outbreak of COVID-19 in China: implications for economic confidence. Appl Psychol Health Well-Being. 2020 Dec 1;12(4):1000–18. doi:10.1111/aphw.12222. [Google Scholar] [PubMed] [CrossRef]
41.Chen G, Wu Q, Jiang H, Zhang H, Peng J, Hu J, et al. Fear of disease progression and psychological stress in cancer patients under the outbreak of COVID-19. Psychooncology. 2020;29(9):1395–8. doi:10.1002/pon.5451. [Google Scholar] [PubMed] [CrossRef]
42.Hawkins RB, Charles EJ, Mehaffey JH. Socio-economic status and COVID-19-related cases and fatalities. Public Health. 2020;189(16):129–34. doi:10.1016/j.puhe.2020.09.016. [Google Scholar] [PubMed] [CrossRef]
43.Rozenfeld Y, Beam J, Maier H, Haggerson W, Boudreau K, Carlson J, et al. A model of disparities: risk factors associated with COVID-19 infection. Int J Equity Health. 2020;19(1):126. doi:10.1186/s12939-020-01242-z. [Google Scholar] [PubMed] [CrossRef]
44.Ginsburgh V, Magerman G, Natali I. COVID-19 and the role of inequality in French regional departments. Eur J Health Econ. 2021;22(2):311–27. doi:10.1007/s10198-020-01254-0. [Google Scholar] [PubMed] [CrossRef]
45.Ernst M, Beutel ME, Brähler E. Cancer as a risk factor for distress and its interactions with sociodemographic variables in the context of the first wave of the COVID-19 pandemic in Germany. Sci Rep. 2022;12(1):2021. [Google Scholar] [PubMed]
46.Rowel R, Sheikhattari P, Barber TM, Evans-Holland M. Introduction of a guide to enhance risk communication among low-income and minority populations: a grassroots community engagement approach. Health Promot Pract. 2012;13(1):124–32. doi:10.1177/1524839910390312. [Google Scholar] [PubMed] [CrossRef]
47.Reed-Thryselius S, Fuss L, Rausch D. The relationships between socioeconomic status, COVID-19 risk perceptions, and the adoption of protective measures in a Mid-Western City in the United States. J Community Health. 2022 Feb 7 [cited 2022 Mar 23];47(3):464–74. doi:10.1007/s10900-022-01070-y. [Google Scholar] [PubMed] [CrossRef]
48.Elharake JA, Shafiq M, McFadden SM, Malik AA, Omer SB. The association of COVID-19 risk perception, county death rates, and voluntary health behaviors among U.S. Adult population. J Infect Dis. 2021;225:jiab131. [Google Scholar]
49.Tei S, Fujino J. Social ties, fears and bias during the COVID-19 pandemic: fragile and flexible mindsets. Humanit Soc Sci Commun. 2022;9(1):1–7. doi:10.1057/s41599-022-01210-8. [Google Scholar] [CrossRef]
50.Siddiquea BN, Shetty A, Bhattacharya O, Afroz A, Billah B. Global epidemiology of COVID-19 knowledge, attitude and practice: a systematic review and meta-analysis. BMJ Open. 2021;11(9):e051447. doi:10.1136/bmjopen-2021-051447. [Google Scholar] [PubMed] [CrossRef]
Copyright (c) 2023 The author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.