Role of Oxygen Pressure on the Surface Properties of Polycrystalline Cu2O Films Deposited By Thermal Evaporator

  • I. A. Khan 1 Department of Physics, Government College University Faisalabad, 38000 Faisalabad, Pakistan
  • S. A. Hussain 1 Department of Physics, Government College University Faisalabad, 38000 Faisalabad, Pakistan
  • A. S. Nadeem 1 Department of Physics, Government College University Faisalabad, 38000 Faisalabad, Pakistan
  • M. Saleem 2 Department of Physics, Lahore University of Management Sciences, Lahore 54000, Pakistan
  • A. Hassnain 3 Department of Physics, Government College University Lahore, 54000 Lahore, Pakistan
  • R. Ahmad 3 Department of Physics, Government College University Lahore, 54000 Lahore, Pakistan
Article ID: 584
837 Views
Keywords: Weight Fraction, Film Thickness, Energy Band Gap, Crystallites, Lattice Parameters, SEM

Abstract

Polycrystalline cuprous oxide (P-Cu2O) films are deposited on Cu substrates for various (0.2, 0.3 and 0.4 mbar) oxygen pressures (OP) by thermal evaporator. The XRD pattern shows the development of Cu (200), Cu2O (200) and Cu2O (311) diffraction planes which confirms the deposition of P-Cu2O films. The intensity of Cu2O (200) and Cu2O (311) planes is associated with the increase of OP. The crystallite size and microstrains developed in (200) and (311) planes are found to be 19.31, 21.18, 11.32 nm; 22.04, 23.11, 12.08 nm and 0.113, 0.103, 0.193; 0.099, 0.096, 0.181 with increasing OP respectively. The d-spacing and lattice constant are found to be 0.210, 0.128 nm and 0.421, 0.425 nm respectively. The bond length of P-Cu2O film is found to be 0.255 nm. The crystallites/unit area of these planes is found to be 12.21, 7.46, 45.16 nm-2 and 8.21, 5.75, 37.16 nm-2 respectively. The texture coefficients of these planes are found to be 1.22, 1.26, 1.11 and 0.78, 0.74 and 0.56 with increasing OP respectively. The O and Cu contents are found to be 5.31, 5.92, 6.94 wt % and 83.01, 82.44, 80.65 wt % respectively. The thickness and growth rate of P-Cu2O films are found to be 87.9, 71.9, 65.5 nm and 17.6, 14.2, 13.1 (nm/min) with increasing OP respectively. The SEM micro-structures reveal the formations of patches of irregular shapes, rounded nano-particles, clouds of nano-particles and their distribution depend on the increasing OP. The refractive index and energy band gap of P-Cu2O films are found to be 1.96, 1.89, 1.92 and 2.47, 2.44 and 2.25 eV with increasing OP respectively.

References

B. Balamurugan, and B. R. Mehta, “Nanocrystalline Thin Films, Optical Properties,Structural Properties, X-Ray Diffraction,†Thin Solid Films, vol. 396, pp. 90-96, 2001.

A. Karapetyan, A. Reymers, S. Giorgio, C. Fauquet, L. Sajti, S. Nitsche, M. Nersesyan, V Gevorgyan, and W Ma- rine “Cuprous oxide thin films prepared by thermal oxidation of copper layer, Morphological and optical properties†Journal of Luminescence, vol. 159, pp. 325-332, 2015.

J. F. Pierson, A. T. Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magne- tron sputtering†Appl. Surf. Sci., vol. 210, pp. 359-367, 2003.

A. R. Rastkar, A. R. Niknam, and B. Shokri, Characterization of copper oxide nanolayers deposited by direct cur- rent magnetron sputtering, Thin Solid Films, vol. 517, pp. 5464-5467, 2009.

A. E. Rakshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide; a review†Solid State Electronics, vol. 29, pp. 7-17, 1986.

F. Marabelli, G. B. Parraviciny, and F. S. Drioli, “Optical gap of CuO,†Phys. Rev. B, vol. 52, 1433, 1995.

J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, “Electronic structure of Cu2O and CuO,†Phy. Rev. B, vol. 38, pp. 11322, 1988.

F. P. Koffyberg, and F. A. Benko, “A photoelectrochemical determination of the position of the conduction and va- lence band edges of p-type CuO,†J. Appl. Phys., vol. 53, pp.1173, 1982.

S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, and W. Assmann, Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum, vol. 57, pp. 377-385, 2000.

S. Ishizuka, S. Kato, Y. Okamoto, T. Sakurai, K. Akimoto, N. Fujiwara, and H.Kobayashi, “Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment,†Appl. Surf. Sci., vol. 216, pp. 94-97, 2003.

M. Wautelet, A. Roos, and F. Hanus, Optical characteristics of laser-synthesised extended thin films of copper oxide,†J. Phys. D: Appl. Phys., vol. 23, pp. 991, 1990.

L. S. Huang, S. G. Yang, T. Li, B. X. Gu, Y. W. Du, Y. N. Lu, and S. Z. Shi,“Preparation of large-scale cupric oxide nanowires by thermal evaporation method,†J.Cryst. Growth, 260, pp. 130-135, 2004.

C. A. N. Fernando, and S. K. Wetthasinghe, “Investigation of photoelectrochemical characteristics of n-type Cu2O films,†Sol. Energy Mater. Sol. Cells, vol. 63, pp. 299-308,2000.

L. Armelao, D. Barreca, M. Bertapelle, Y. Bottaro, C. Sada, and E. Tondello, “A sol–gel approach to nanophasic copper oxide thin films,†Thin Solid Films, vol. 442, pp. 48-52,2003.

T. Mahalingam, J. S. P. Chitra, J. P. Chu, and P. Sebastian, Preparation and microstructural studies of electrode- posited Cu2O thin films,†J. Mater. Lett. Vol. 58, pp.1802-1807, 2004.

T. Minami, H. Tanaka, T. Shimakawa, J. Miyata, H. Sato, “High-Efficiency Oxide Heterojunction Solar Cells Using Cu2O Sheets,†Jpn.J. Appl. Phys. Vol. 43, pp. L917,2004.

T. Maruyama, “Copper Oxide Thin Films Prepared from Copper Dipivaloylmethanate and Oxygen by Chemical Vapor Deposition,†Jpn. J. Appl. Phys. Vol. 37, pp. 4099, 1998.

K. Santra, C. K. Sarkar, M. K. Mukherjee, and B. Ghosh, “Copper oxide thin films grown by plasma evaporation method,†Thin Solid Films, vol. 213, pp. 226-229, 1992.

R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, Effects of oxygen ion energy on the growth of CuO films by molecular beam epitaxy using mass-separated low-energy O+ beams,†J. Mater. Res. Vol. 9, pp. 1280-1283, 1994.

I. A. Khan, M. Noor, A. Rehman, A. Farid, M. A. K. Shahid, and M. Shafiq, “Role of evaporation time on the structural and optical properties of ZnO films deposited by thermal evaporator,†Eur. Phys. J. Appl. Phys., vol. 72, pp. 30302, 2015.

G. K. Williamson, and R. E. Smallman, “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum,†Philosophical Magazine vol. 1, pp. 34-46, 1956

X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, “Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared bypulsed laser deposition,†Appl. Phys.A, vol. 77, pp. 561-565, 2003.

Z. R. Khan, M. Zulfequar, and M. S. Khan, “The Effect of ZnO Thin Film and Its Structural and Optical Proper- ties Prepared by Sol-Gel Spin Coating Method,†Mat. Sci. &Engg. B, vol. 174, 145-149, 2010.

Z. R. Khan, M. S. Khan, M. Zulfequar, and M. S. Khan, „Optical and structural properties of ZnO thin films fab- ricated by sol-gel method,†Mat. Sci. & Appl., vol. 2, pp. 340-345,2011.

E. Djurado, P. Bouvier, and G. Lucazeau, “Crystallite Size Effect on the Tetragonal-Monoclinic Transition of Un- doped Nanocrystalline Zirconia Studied by XRD and Raman Spectrometry,†J. of Solid State Chemistry, vol. 149, pp. 399-407, 2000.

B. D. Cullity, and S. R. Stock, Elements of X-ray Diffraction. Prentice Hall, New Jersey,2001.

R. Mariappan, M. Ragavendar, and V. Ponnuswamy, “Growth and characterization of chemical bath deposited Cd1−x ZnxS thin films,†J. Alloys Compd., vol. 509, pp. 7337-7343, 2011.

M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdulah, and M. Rusop, “Influence of doping con- centrations on the aluminum doped zinc oxide thin films properties for ultraviolet photo conductive sensor applica- tions,†Opt. Mater., vol. 32, pp. 696-699, 2010.

A . Rizzo, M. A. Signore, M. F. D. Riccardis, L. Capodieci, D. Dimaio, and T. Nocco, “Influence of growth rate on the structural and morphological properties of TiN, ZrN and TiN/ZrN multilayers,†Thin Solid Films, vol. 515, pp. 6665-6671, 2007.

I. A. Khan, M. Hassan, T. Hussain, R. Ahmad, M. Zakaullah, and R. S. Rawat,“Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite films by dense plasma Focus device,†Applied Surface Sci- ence, vol. 255, pp. 6132-6140,2009.

F. K. Mugwang‟a, P. K. Karimi, W. K. Njoroge, O. Omayio, and S. M. Waita, Optical characterization of Copper Oxide thin films prepared by reactive dc magnetron sputtering for solar cell applications,†Int. J. Thin Film Sci. Tec., vol. 2, pp. 15-24, 2013.

K. Kawaguchi, R. Kita, M. Nishiyama, and T. Morishita, “Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/Oâ€. Journal of Crystal Growth vol. 143, pp. 221-226, 1994.

K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, S. K. Gupta, D. Bhattacharya, R.Pinto, G. P. Kothiyal, and

S. C. Sabharwal, “A study of the CuO phase formation during thin film deposition by molecular beam epitaxy,†Thin Solid Films, vol. 324, pp. 37-43,1998.

Published
2020-05-22
How to Cite
Khan, I. A., Hussain, S. A., Nadeem, A. S., Saleem, M., Hassnain, A., & Ahmad, R. (2020). Role of Oxygen Pressure on the Surface Properties of Polycrystalline Cu2O Films Deposited By Thermal Evaporator. Materials Physics and Chemistry, 2(1), 14-22. https://doi.org/10.18282/mpc.v1i3.584
Section
Article