Investigation of poly (2-methyl imidazole co 1,4-butanediol diglycidyl ether) as a leveler for blind hole copper plating
Abstract
The current synthetic leveler agents are complex to operate, troublesome to purify, and low to pore filling rates. Herein, we report a new, simple, green, and inexpensive method for the synthesis of leveler agents and study their properties systematically. In acidic copper sulfate plating solutions, including polyethylene glycol (PEG), sodium 3,3’-dithiodipropane sulfonate (SPS), and chloride ions, the relation between leveler agents (dimethylimidazole and 1,4-butanediol diglycidyl ether) and the filling of blind holes have been investigated. The synthesized leveler agent was structurally characterized by infrared spectroscopy and gel chromatography tests. The plating containing the leveler agent passed plating tests as well as reliability tests and met PCB production requirements. The electrochemical behavior of the leveler agent was investigated using electrochemical tests. The X-ray diffractometer (XRD) was used to observe the differences in crystal orientation on the surface of the plated layers.
Copyright (c) 2023 Xiangjian Zeng, Qiuman Zhou, Zhenjie Yuan, Lixin Huang, Guanghui Hu, Nian He, Qingming Zeng, Zhanchang Pan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
1. Zan L, Liu Z, Yang Z, Wang Z. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating. Electrochemical and Solid State Letters 2011; 14(12): D107–D109. doi: 10.1149/2.018112esl
2. Zhu HP, Zhu QS, Zhang X, et al. Microvia filling by copper electroplating using a modified safranine t as a leveler. Journal of the Electrochemical Society 2017; 164(9): D645–D651. doi: 10.1149/2.0111712jes
3. Van Quy D, Kondo K, Van Ha H, Hirato T. Communication—Bottom-up TSV filling using sulfonated diallyl dimethyl ammonium bromide copolymer as a leveler. Journal of the Electrochemical Society 2019; 166 (12): D505–D507. doi: 10.1149/2.1021912jes
4. Teng X, Tao Z, Long Z, et al. 1-(4-Hydroxyphenyl)-2H-tetrazole-5-thione as a leveler for acid copper electroplating of microvia. RSC Advances 2022; 12(25): 16153–16164. doi: 10.1039/d2ra02274e
5. Long JG, Searson PC, Vereecken PM. Electrochemical characterization of adsorption-desorption of the cuprous-suppressor-chloride complex during electrodeposition of copper. Journal of the Electrochemical Society 2006; 153(4): C258–C264. doi: 10.1149/1.2168050
6. Wang A, Chen B, Fang L, et al. Influence of branched quaternary ammonium surfactant molecules as levelers for copper electroplating from acidic sulfate bath. Electrochimica Acta 2013; 108: 698–706. doi: 10.1016/j.electacta.2013.07.017
7. Huynh TMT, Weiss F, Hai NTM, et al. On the role of halides and thiols in additive-assisted copper electroplating. Electrochimica Acta 2013; 89: 537–548. doi: 10.1016/j.electacta.2012.10.152
8. Dow WP, Chiu YD, Yen MY. Publisher’s note: Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide. Journal of the Electrochemical Society 2009; 156(6): S7. doi: 10.1149/1.3117562
9. Wang F, Li Y, He H, et al. Effect of bis-(3-sulfopropyl) disulfide and chloride ions on the localized electrochemical deposition of copper microstructures. Journal of the Electrochemical Society 2017; 164: D419–D424. doi: 10.1149/2.0781707jes
10. Tan M, Guymon C, Wheeler DR, Harb JN. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. Journal of The Electrochemical Society 2007; 154: D78. doi: 10.1149/1.2401057
11. Gu M, Zhong Q. Copper electrocrystallization from acidic sulfate electrolyte containing MPS additive. Journal of Applied Electrochemistry 2011; 41: 765–771. doi: 10.1007/s10800-011-0293-0
12. Ryan K, Dunn K, van Eisden J, Adolf J. Properties of PEG, PPG and their copolymers: Influence on copper filling of damascene interconnects. Journal of the Electrochemical Society 2013; 160(12): D3186–D3196. doi: 10.1149/2.033312jes
13. Gallaway JW, West AC. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating. Journal of the Electrochemical Society 2008; 155: D632–D639. doi: 10.1149/1.2958309
14. Gallaway JW, Willey MJ, West AC. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors. Journal of the Electrochemical Society 2009; 156(8): D287–D295. doi: 10.1149/1.3142422
15. Wang W, Li YB. Effect of Cl− on the adsorption-desorption behavior of PEG. Journal of the Electrochemical Society 2008; 155(4): D263–D269. doi: 10.1149/1.2834907
16. Luo J, Li Z, Shi M, et al. Effects of accelerator Alkyl chain length on the microvia filling performance in copper superconformal electroplating. Journal of the Electrochemical Society 2019; 166(4): D104–D112. doi: 10.1149/2.0571904jes
17. Li Z, Tan B, Shi M, et al. Bis-(sodium sulfoethyl)-disulfide: A promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges. Journal of the Electrochemical Society 2020; 167(4): 042508. doi: 10.1149/1945-7111/ab7b85
18. Dow WP, Li CC, Su YC, et al. Microvia filling by copper electroplating using diazine black as a leveler. Electrochimica Acta 2009; 54(24): 5894–5901. doi: 10.1016/j.electacta.2009.05.053
19. Kim MJ, Seo Y, Oh JH, et al. Communication—Halide ions in TEG-based levelers affecting TSV filling performance. Journal of the Electrochemical Society 2016; 163(5): D185–D187. doi: 10.1149/2.0101606jes
20. Tang J, Zhu QS, Zhang Y, et al. Copper bottom-up filling for through silicon via (TSV) using single JGB additive. ECS Electrochemistry Letters 2015; 4(9): D28–D30. doi: 10.1149/2.0101509eel
21. Manu R, Jayakrishnan S. Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application. Materials Chemistry and Physics 2012; 135(2–3): 425–432. doi: 10.1016/j.matchemphys.2012.05.003
22. Bozzini B, Mele C, D’Urzo L, Romanello V. An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B). Journal of Applied Electrochemistry 2006; 36: 973–981. doi: 10.1007/s10800-006-9124-0
23. Liao C, Zhang S, Chen S, et al. The effect of tricyclazole as a novel leveler for filling electroplated copper microvias. Journal of Electroanalytical Chemistry 2018; 827: 151–159. doi: 10.1016/j.jelechem.2018.08.042
24. Chang C, Lu X, Lei Z, et al. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating. Electrochimica Acta 2016; 208: 33–38. doi: 10.1016/j.electacta.2016.04.177
25. Ren S, Lei Z, Wang Z. Investigation of nitrogen heterocyclic compounds as levelers for electroplating Cu filling by electrochemical method and quantum chemical calculation. Journal of the Electrochemical Society 2015; 162(10): D509–D514. doi: 10.1149/2.0281510jes
26. Chen B, Xu J, Wang L, et al. Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating. ACS Applied Materials & Interfaces 2017; 9(8): 7793–7803. doi: 10.1021/acsami.6b15400
27. Cao H, Hang T, Ling H, et al. Study on the behaviors of Cu filling in special through-silicon-vias by the simulation of electric field distribution. Microelectronic Engineering 2014; 116: 1–5. doi: 10.1016/j.mee.2013.11.011
28. Cao H, Hang T, Ling H, et al. Linear sweep voltammetric study on the copper electrodeposition of though-silicon-vias. Journal of the Electrochemical Society 2014; 161(6): D349–D352. doi: 10.1149/2.096406jes
29. Zhang Y, Ding G, Wang H, et al. Optimization of innovative approaches to the shortening of filling times in 3D integrated through-silicon vias (TSVs). Journal of Micromechanics and Microengineering 2015; 25(4): 045009. doi: 10.1088/0960-1317/25/4/045009
30. Xu J, Chen B, Lv J, et al. Aryl modification of diketopyrrolopyrrole-based quaternary ammonium salts and their applications in copper electrodeposition. Dyes and Pigments 2019; 170: 107559. doi: 10.1016/j.dyepig.2019.107559
31. Yoshida K, Masuda Y, Sakai Y, Shimomura T. Adsorption behavior of coumarin onto a concaved substrate in water under an electric field. Journal of the Electrochemical Society 2009; 156(1): D1–D4. doi: 10.1149/1.2999350
32. Dow WP, Huang HS, Yen MY, Huang HC. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. Journal of the Electrochemical Society 2005; 152(6): C425–C434. doi: 10.1149/1.1901670
33. Huang J, Gao LY, Liu ZQ. The electrochemical behavior of leveler JGB during electroplating of nanotwinned copper. In: Proceedings of the 21st International Conference on Electronic Packaging Technology (ICEPT); 12–15 August 2020; Guangzhou, China. pp. 1–4.
34. Li YB, Wang W, Li YL. Mechanism of JGB during copper via filling process. Chinese Journal of Inorganic Chemistry 2008; 24(4): 534–540.
35. Lee MH, Lee Y, Oh JH, et al. Microvia filling with copper electroplated with quaternary ammonium. Journal of the Electrochemical Society 2017; 164(14): D1051. doi: 10.1149/2.0121802jes
36. Tang M, Zhang S, Qiang Y, et al. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper. RSC Advances 2017; 7(64): 40342–40353. doi: 10.1039/c7ra06857c
37. Li J, Xu J, Wang X, et al. Novel 2,5-bis(6-(trimethylamonium)hexyl)-3,6-diaryl-1,4-diketopyrrolo 3,4-c pyrrole pigments as levelers for efficient electroplating applications. Dyes and Pigments 2021; 186: 109064. doi: 10.1016/j.dyepig.2020.109064
38. Lee MH, Lee Y, Sung M, et al. Structural influence of terminal functional groups on TEG-based leveler in microvia filling. Journal of the Electrochemical Society 2020; 167(10): 102505. doi: 10.1149/1945-7111/ab98a9
39. Hai NTM, Furrer J, Barletta E, et al. Copolymers of imidazole and 1,4-butandiol diglycidyl ether as an efficient suppressor additive for copper electroplating. Journal of the Electrochemical Society 2014; 161(9): D381–D387. doi: 10.1149/2.0111409jes
40. Luo J, Li Z, Tan B, et al. Communication—Triphenylmethane-based leveler for microvia filling in copper super-conformal electroplating. Journal of the Electrochemical Society 2019; 166(13): D603–D605. doi: 10.1149/2.0531913jes
41. Ji L, Wang S, Wang C, et al. Improved uniformity of conformal through-hole copper electrodeposition by revision of plating cell configuration. Journal of the Electrochemical Society 2015; 162(12): D575–D583. doi: 10.1149/2.0761512jes
42. Dow WP, Yen MY, Chou CW, et al. Practical monitoring of filling performance in a copper plating bath. Electrochemical and Solid State Letters 2006; 9(8): C134–C137. doi: 10.1149/1.2205047
43. Wang C, An M, Yang P, Zhang J. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations. Electrochemistry Communications 2012; 18: 104–107. doi: 10.1016/j.elecom.2012.02.028
44. Xiao N, Li N, Cui G, et al. Triblock copolymers as suppressors for microvia filling via copper electroplating. Journal of the Electrochemical Society 2013; 160(4): D188–D195. doi: 10.1149/2.015306jes
45. Zhang X, Hu X, Jiang X, et al. Influence of additives on electroplated copper films and shear strength of SAC305/Cu solder joints. Journal of Materials Science-Materials in Electronics 2020; 31: 2320–2330. doi: 10.1007/s10854-019-02764-1