Fullerene-doped polyimide materials treated via the vacuum ultraviolet irradiation: Novel possible approach to create the structured relief

  • Natalia Kamanina 1 Lab for Photophysics of Media with Nanoobjects at Vavilov State Optical Institute 2 Saint-Petersburg Electrotechnical University 3 National Research Center “Kurchatov Institute”
  • Galina Zvereva 4 Saint-Petersburg University of Civil Aviation
Article ID: 3319
242 Views
Keywords: Novel Approach to Coating Development, Vacuum Ultraviolet Irradiation, Polyimide Thin Films, Fullerenes, Relief to Orient the Liquid Crystal Molecules, Ablation, Spectra, Wetting Angle, Atomic-force

Abstract

Among the various surface reliefs obtained by the modification of the nanostructured materials used for the orientation of the liquid crystal molecules or applied as the possible way to extend the optical limiting mechanisms, the vacuum ultraviolet irradiation can provoke the novel approach with the varied contact angle and can be recommended for use in the development of the light- and electro-addressable liquid crystal spatial light modulators, switchers, and limiters. The main accent in the current paper is connected with the study of an impact of the vacuum ultraviolet irradiation with the different wavelength and power densities on the fullerene-structured polyimide thin films. To support the proposed idea, the spectral measurements were carried out, the contact wetting angles of the structured surface were determined, and an atomic force microscopic analysis was performed. Based on the data obtained, it is proposed to effectively use such relief formed by the vacuum ultraviolet irradiation for the design of the modulators and converters of the laser radiation, some biomedicine devices and the solar cells as well where a liquid crystal mesophase is actively used as an electro-optical modulating layer. Some ideology of the current article is aimed that the polyimide materials, when irradiated in the vacuum ultraviolet, can perform a dual role, as a photo layer and as an orienting layer as well.

Author Biography

Natalia Kamanina, 1 Lab for Photophysics of Media with Nanoobjects at Vavilov State Optical Institute 2 Saint-Petersburg Electrotechnical University 3 National Research Center “Kurchatov Institute”

Head of the lab for Photophysics of media with nanoobjects

Vavilov State Optical Institute

References

Wang Q, Sun R, Tian Y, Huang X. Effect of polymer network on liquid crystal molecules orientation. Proceedings of SPIE 1997; 3319: 260–262. doi: 10.1117/12.301297

Tsoi VI, Tarasishin AV, Belyaev VV, Trofimov SM. Modelling the diffraction of light by structures with spatial periodicity of the optical parameters of the substance and of the surface relief. Journal of Optical Technology 2003; 70(7): 465–469. doi: 10.1364/JOT.70.000465

Wu KJ, Chu KC, Chao CY, et al. CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices. Nano Letters 2007: 7(7): 1908–1913. doi: 10.1021/NL070541N

Ouskova E, Vapaavuori J, Kaivola M. Self-orienting liquid crystal doped with polymer-azo-dye complex. Optical Materials Express 2011; 1(8): 1463–1470. doi: 10.1364/OME.1.001463

Hu W, Kumar Srivastava A, Lin X, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments. Applied Physics Letters 2012; 100: 111116. doi: 10.1063/1.3694921

Rasha Ata Alla, Gurumurthy Hegde, Lachezar Komitov, et al. Composite materials containing perfluorinated and siloxane units for vertical alignment of liquid crystals. Soft Nanoscience Letters 2013; 3(1): 11–13. doi: 10.4236/snl.2013.31003

Ould-Moussa N, Blanc C, Zamora-Ledezma C, et al. Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liquid Crystals 2013; 40(12): 1628–1635. doi: 10.1080/02678292.2013.772254

Blanc C, Coursault D, Lacaze E. Ordering nano- and microparticles assemblies with liquid crystals. Liquid Crystals Reviews 2013; 1(2): 83–109. doi: 10.1080/21680396.2013.818515

Semina O, Dubtsov A, Shmeliova D, et al. Electric and magnetic fields in photoalignment of liquid crystals. Journal of the Society for Information Display 2015; 23(5): 223–231. doi: 10.1002/jsid.383

Pasechnik SV, Semina OA, Shmeliova DV, et al. Photo controlled surfaces in rheology of liquid crystals. Molecular Crystals and Liquid Crystals 2015; 611(1): 81–93. doi: 10.1080/15421406.2015.1027998

Kamanina NV. Nanoparticles doping influence on the organics surface relief. Journal of Molecular Liquids 2019; 283: 65–68. doi: 10.1016/j.molliq.2019.03.043

Folwill Y, Zappe H. Quantifying spatial alignment and retardation of nematic liquid crystal films by Stokes polarimetry. Applied Optics 2020; 59(26): 7968–7974. doi: 10.1364/ao.400207

Bukowczan A, Hebda E, Pielichowski K. The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers. Journal of Molecular Liquids 2020; 321: 114849. doi: 10.1016/j.molliq.2020.114849

Adamczyk A, Strugaiski Z. Liquid crystals (Polish). 1st ed. Wydawnictwa Naukowo-Techniczne; 1976. p. 204.

Blinov LM. Electrooptics and magnetooptics of liquid crystals (Russian). Nauka; 1978. p. 384.

Chandrasekar S. Liquid crystals. Zhidkie kristally (translator). Mir; 1980. p. 344.

Schadt M. Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices. Liquid Crystals 1993; 14(1): 73–104. doi: 10.1080/02678299308027305

de Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford University Press; 1995. p. 616.

Kamanina NV. Photoinduced phenomena in fullerene-doped PDLC: Potentials for optoelectronic applications. Opto-Electronic Review 2004; 12(3): 285–289.

Kamanina NV. Fullerene-dispersed nematic liquid crystal structures: Dynamic characteristics and self-organization processes. Physics-Uspekhi 2005; 48(4): 419–427. doi: 10.1070/PU2005v048n04ABEH002101

Vasiliev AA, Kasasent D, Kompanets IN, Parfenov AV. Spatial light modulators (Russian). Kompanets IN (editor). Радио и ÑвÑзь; 1987. p. 320.

Zharkova GM, Sonin AS. Liquid crystal composites (Russian). Nauka; 1994. p. 214.

Kamanina NV, Sizov VN, Staselko DI. Fullerene-doped polymer-dispersed liquid crystals: Holographic recording and optical limiting effect. Proceeding of SPIE 2001; 4347: 487–492. doi: 10.1117/12.425005

Kamanina N, Putilin S, Stasel’ko D. Nano-, pico- and femtosecond study of fullerene-doped polymer-dispersed liquid crystals: Holographic recording and optical limiting effect. Synthetic Metals 2002; 127(1–3): 129–133. doi: 10.1016/S0379-6779(01)00602-6

Belyaev VV. Promising applications and technologies of liquid crystal displays and photonics devices. Liquid Crystals and Their Application 2015; 15(3): 7–27. doi: 10.18083/LCAppl.2015.3.7

Kamanina NV, Likhomanova SV, Zubtcova YuA, et al. Functional smart dispersed liquid crystals for nano- and biophotonic applications: Nanoparticles-assisted optical bioimaging. Journal of Nanomaterials 2016; 2016: 8989250. doi: 10.1155/2016/8989250.

Kamanina NV, Toikka AS, Likhomanova SV, et al. Correlation between concentration of injected nanoparticles and surface relief of organic matrices: A promising method for liquid crystal molecules orientation. Liquid Crystals and Their Application 2021; 21(1): 44–49. doi: 10.18083/LCAppl.2021.1.44

Kamanina NV, Vasilenko NA. Influence of operating conditions and interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Optical and Quantum Electronics 1997; 29(1): 1–9. doi: 10.1023/A:1018506528934

Chigrinov VG, Kompanets IN, Vasiliev AA. Behavior of nematic liquid crystals in inhomogeneous electric fields. Molecular Crystals and Liquid Crystals 1979; 55: 193–207. doi: 10.1080/00268947908069802

Chigrinov VG, Pikin SA. New type of high-frequency electrohydrodynamic instability in nematic liquid crystals. Soviet Physics—JETP 1980; 78: 246–252.

Ostrovsky BI, Chigrinov VG. Linear electrooptical effect in chiral smectic C* liquid crystals. Crystallography Reports 1980; 25: 560–567.

Chigrinov VG, Kozenkov VM, Kwok HS. Photoalignment of liquid crystalline materials: Physics and applications. John Wiley & Sons, Inc.; 2008. p. 248.

Chigrinov V. Liquid crystal photonics conference 2010. Liquid Crystals Today 2011; 20(2): 71–73. doi: 10.1080/1358314X.2011.563980

Chigrinov VG. Liquid crystal photoalignment: A new challenge for liquid crystal photonics. Photonics Letters of Poland 2010; 2(3): 104–106. doi: 10.4302/photon.%20lett.%20pl.v2i3.146

Chigrinov VG, Kwok HS. Photoalignment of liquid crystals: Applications to fast response ferroelectric liquid crystals and rewritable photonic devices. In: Kwok HS, Naemura S, Ong HL (editors). Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday. World Scientific Publishing Co. Pte. Ltd.; 2013. p. 199–226. doi: 10.1142/9789814417600_0009

Fuh AYG, Khoo IC, Lin TH, et al. Optics and photonics of Taiwan international conference: Introduction by the feature editors. Applied Optics 2014; 53(22): DT1–DT5. doi: 10.1364/AO.53.000DT1

Chigrinov VG, Srivastava AK, Kwok HS. Azo-dye photoalignment materials. In: Ishihara S, Kobayashi S, Ukai Y (editors). High Quality Liquid Crystal Displays and Smart Devices—Volume 2: Surface Alignment, New Technologies and Smart Device Applications. IET; 2019. p. 41–64. doi: 10.1049/PBCS068G_ch3

Chigrinov VG. Liquid crystal applications in displays and photonics: New trends. In: Eurodisplay 2019; 16–20 September 2019; Minsk, Belarus. Belarusian State University of Informatics and Radioelectronics; 2019.

Kamanina NV, Bagrov IV, Belousova IM, et al. Fullerene-doped -conjugated organic systems under infrared laser irradiation. Optics Communications 2001; 194(4–6): 367–372. doi: 10.1016/S0030-4018(01)01322-0

Kamanina NV, Serov SV, Shurpo NA, et al. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. Journal of Materials Science: Materials in Electronics 2012; 23: 1538–1542. doi: 10.1007/s10854-012-0625-9

Kamanina NV, Iskandarov MO, Nikitichev AA. Optical properties of a polyimide–fullerene system in the near infrared range ( = 1047 nm). Technical Physics Letters 2003; 29: 672–675. doi: 10.1134/1.1606785

Kamanina NV, Plekhanov AI. Optical limiting mechanisms in fullerene-containing Pi-conjugated organic materials: Polyimide and COANP. Proceedings of SPIE 2002; 4900: 61–71. doi: 10.1117/12.484613

Breki AD, Didenko AL, Kudryavtsev VV, et al. Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics. Inorganic Materials: Applied Research 2017; 8(1): 56–59. doi: 10.1134/S2075113317010075

Pavlenko VI, Cherkashina NI, Yastrebinsky RN. Synthesis and radiation shielding properties of polyimide/Bi2O3 composites. Heliyon 2019; 5(5): e01703. doi: 10.1016/j.heliyon.2019.e01703

Cherkashina NI, Pavlenko VI, Noskov AV, et al. Gamma radiation attenuation characteristics of polyimide composite with WO2. Progress in Nuclear Energy 2021; 137: 103795. doi: 10.1016/j.pnucene.2021.103795

Cherkashina NI, Pavlenko VI, Abrosimov VM, et al. Effect of 10 MeV electron irradiation on polyimide composites for space systems. Acta Astronautica 2021; 184: 59–69. doi: 10.1016/j.actaastro.2021.03.032

Bershtein V, Egorov V. Differential Scanning Calorimetry in Physics and Chemistry of Polymers. Khimia; 1990. p. 255.

Published
2023-04-23
How to Cite
Kamanina, N., & Zvereva, G. (2023). Fullerene-doped polyimide materials treated via the vacuum ultraviolet irradiation: Novel possible approach to create the structured relief. Materials Physics and Chemistry, 5(1). https://doi.org/10.18282/mpc.v5i1.3319
Section
Article