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Abstract: Let x : Mn→Nn+1 be an n-dimensional hypersurface immersed in an (n+1)-dimensional Riemannian manifold Nn+1. 

Let σi (0≤i≤n) be the ith mean curvature and Qn = , where Ci
n is binomial coefficient. The second 

author showed that functional Wn(x)=∫MQndM is a conformal invariant and gave the Euler-Lagrange equation. Wn is called 

the nth Willmore functional of x. A hypersurface is called the nth order Willmore hypersurfaces if it is a solution of the 

Euler-Lagrange equation.  In this paper, we establish the ordinary differential equation of the nth order Willmore revolution 

hypersurfaces and present standard examples of the nth order Willmore hypersurfaces.

Key words: Conformal invariants; nth order Willmore functional; nth order Willmore revolution hypersurface.

1. Introduction
Let x : Mn→Nn+1 be an n -dimensional hypersurface isometrically immersed in a Riemannian (n+1)-manifold Nn+1. Let 

gij  be the Riemannian metric tensor of Mn at x and hij be the second fundamental tensor of Mn at x. The roots of the equation 
det(hij  - λgij) = 0, λ1,…, λn  are called the principal curvature of Mn at x, and the rth mean curvature σr of Mn at x is defined 
dy

where Cr
n is the binomial coefficient. For convenience, we define σ0=1. When n=2 and N is 3-dimensional Euclidean space 

  R3, the functional is reduced to W(M) =  ∫M σ1
2 dM. The variational problem of the functional was studied by G. Thomsen and 

W. Blaschke around 1923[2]. In 1965, T. J. Willmore restudied the functional, and proved that a closed pipe-like surface 
which is generated by a circle revolving around a closed curve satisfies W (M) > 2π2 and the equality holds if and only if M 
is a standard torus.  Then he proposed the famous Willmore Conjecture: the above inequality holds for all topological tori 
[16] and the equality holds if and only if the surface conformally equivalent to the standard torus.  Recently, F. Margues 
and A. Neves resolved this conjecture .  There are two aspects of generalization for classical Willmore functional.  One is 
for general dimension and codimension of M. In 1973, B. Y. Chen proved that the functional.

                                                              (1.1)

is a conformal invariant[5]. Z. Guo, H. Li and C. Wang gave the formulas of the first and the second variational of W 
defined by (1.1). They also present some standard examples of the stable critical hypersurfaces of the functional[7]. 
Another aspect of the generalization is for the orders explanted in the following. Let Mn be a hypersurface of Nn+1, for any 
integer r , 2 ≤ r ≤ n. It was proved that the functional
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                                         (1.2)

is a conformally invariant of Mn in Nn+1 , where Qr  = . As for r = 2 Wr recovers the the Chen- 

Willmore functional, we call Wr(M) rth order Willmore functional[8]. 
Define the kth Newston transformation T(k) of A = (hij)n×n  by:

T(k)= SkI - Sk-1A +…+ (-1)k-1 S1A
k-1 + (-1)k Ak , k = 0, 1,…, n.

Where Sk = Ck
nσk . The second author calculated the variation of functional Wr(M), and got the Euler-Lagrange equation as 

follows[8] :
                  (1.3)

In particular, when r = n, we have:
                      (1.4)

Where c is the sectional curvature of N . Here we call a hypersurface satisfying (1.5) the nth order Willmore 
hypersurface. When n = r = 3, the second author gave the standard examples of 3th order Willmore hypersurfaces.

The main purpose of this paper is to construct the nth order Willmore hypersurface for general dimension n ≥ 3. We 
organize the paper as follows: in Section 2 we establish the ordinary differential equation of nth order Willmore revolution 
hypersurfae in Rn+1 ( see Theorem 2.1 ); in Section 3 we consider the solution of the equation and get the standard examples 
of nth order Willmore hypersurfaces (see Theorem 2.2).

2. O. D. E of nth order Willmore revolution hypersurfae in Rn+1

2.1 Some lemmas
Let Sn-1 be the unit sphere in n-dimensional Euclidean space Rn , ξ = (ξ1 ,…, ξn) be the position vector of a point of 

Sn-1 in Rn  and γ = (α, β) : R1 → R2 be a smooth curve in R2 . We consider product immersion φ : R1 × Sn-1 → Rn+1 , i. e. the 
revolution hypersurface which is defined by

φ(t, ξ) = (αξ, β).                                                                         (2.1.1)
We take local field of orthonormal tangent frames {e~ a, 2 ≤ a ≤ n} on Sn-1 , its field of dual frames {w~ a} and make the 
following convention on the range of indices:

2 ≤ a, b, c,…, ≤ n;  1 ≤ i, j, k,…, ≤ n.
Then we can write the structure equations of Sn-1 as follows:

                                                                       (2.1.2)
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                                                               (2.1.3)

Obviously, { } is a local field of tangent frames on R1 × Sn-1 . From

we see that if we take

                                    (2.1.4)

then {e1 ,…, en} forms a local field of orthonormal tangent frames on R1 × Sn-1 , and en+1  is a normal frame on hypersurface φ .
Let {ω1 ,…, ωn} be the dual frame of {e1 ,…, en}, then the structure equations of φ can be written as:

Where ωij, hij are called the connection form and the second fundamental tensor of Mn , which satisfy ωij+ωji = 0 and hij = 
hji. Taking exterior derivative the above equations and contrasting with (2.1.2) and (2.1.3), we have

                                         (2.1.5)

For convenience , we denote

                                                   (2.1.6)

For a smooth function f on R1 × Sn-1 , we define the first, second covariant derivatives and Laplacian as follows:

Then we have
Lemma 2.1[8]    For a smooth function f (t) defined on R1 × Sn-1 , we have

                                             (2.1.7)

On the following, we assume(xα)′ = αxα-1 for all α, from the above we have
Lemma 2.2   A revolution hypersurface in Rn+1 , defined by (2.1.1), is a nth order Willmore hypersurface if and only if φ 
satisfies the following equation:
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  (2.1.8)

where x0 =

Proof  Since c = 0, from (1.4) we have

Noting

and using Lemma 2.1 we have

    (2.1.9)

From the definition of T(k-1)  and Lemma 2.1 we have
   (2.1.10)

where x0 = 

From (2.1.10) and (2.1.9) we have (2.1.8). This completes the proof of Lemma 2.2.
Lemma 2.3    A hypersurface φ defined by (2.1.1) is a nth order Willmore hypersurface if and only if φ satisfies the 

following equation :
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 (2.1.11)

where

Proof  From the definition of σr we have:

Similarly, we have
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By taking these into (2.1.8) we get (2.1.11). This completes the proof of Lemma 2.3.

2.2 ODE of the nth order Willmore revolution hypersurfaces
In the following we will simplify the equation (2.1.11). The key technic to simplify equation (2.1.11) is to choose a 

suitable parameter of curve γ. We need following Lemma:
Lemma 2.4[8]    For a smooth curve γ = (α, β) : I → R2, where α, β are smooth function on interval I, and α ≠ 0, we 

can choose a parameter t of γ, such that |γ′|2 = α2 .
In the following, we assume α > 0, so γ and the rotational axis xn+1 have no intersection point. Thus we have |γ′| = α, 

which implies . So we can assume

                                             (2.2.1)

where y is a function on R1 . We see that γ(t) is determined by function y(t). We will derive the equation with respect to y 
from (2.1.11). From (2.1.6) and (2.2.1) we have

                                                    (2.2.2)

Furthermore, we have

                                 (2.2.3)

   (2.2.4)

By a director but long computation we get the following theorem.
Theorem 2.1    A hypersurface φ defined by (2.1.1) is a nth order Willmore hypersurface if and only if y(t) satisfies 

the following ODE:
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  (2.2.5)

3. A classes of nth order Willmore hypersurfae in Rn+1

3.1 A classes of special solution of the equation
In this section, we concentrate on considering the solution of equation (2.2.5).  It is very difficult to get all the solutions.  

Fortunately, we can get a classes of special solutions of this equation. In the fact, we can find the solutions of (2.2.5), 
satisfying

y′ = A sinh y + B cosh y,                                                                 (3.1.1)
where A and B are some constants. For the purpose to determine constants A and B by using (2.2.5) and (3.1.1), we need 

a long computation. From (3.1.1) we have
y′′ = 2AB sinh2 y + (A2 + B2) sinh y cosh y + AB,

y′′′ = 2A(A2 + 3B2 ) sinh3 y + 2B(3A2 + B2 ) sinh2 y cosh y +A(A2 + 5B2 ) sinh y + B(A2 + B2 ) cosh y
Taking y′ , y′′ and y′′′ into (2.2.5) and taking a long computation we have the following equation.
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Lemma 3.1    If y is a solution of equation  (2.2.5)  and (3.1.1) then we have
   (3.1.2)

Where P1k, P1n, P2n, P2k, P3n, P4n, P3k, P4k, P5n, P6n, P5k and P6k  are defined as follows:
P1k := -(A - 1)(A + n - 1)2 (kA + n - 1)[(n - 1)A + 1] + {(A + n - 1)2 (3kA + n - 2k - 1) +(A - 1)2 (kA + n - 1) + 2(A - 

1)(A + n - 1)[k(3A - 1) + 2(n - 1)]
-(n - k - 1)[kA(A - 1)(A + n - 1) + (A + n - 1)(A + n - 2)(kA + n - k)
+(2(A - 1)(A + n - 1) + n - 1)(k(A + n - 1) + kA + n - k)] - k[A(A - 1)(kA + n - k) +(A + n - 1)2 ((3k - 2)A + n - 2k) 

+ 2(A + n - 1)((3k - 1)A2 + 2(n - 2k)A - n + k))  +(A + n - 1)2 (A + n - 2) + A(A - 1)(A + n - 1) + (A + n - 1)(4(A - 1)(A 
+ n - 1) +2n - 2)]}B2 + {3kA + (n - 2k - 1) - 2k(k - 2)(A + n - 1) - k(n - k)(A + n - 2) -k((3k - 2)A + (n - 2k))}B4 ,

P1n = A(A - 1)(A + n - 1)3 + (A + n - 1)[A(A - 1) + (A + n - 1)(A + n - 2) +4(A - 1)(A + n - 1) + 2(n - 1)]B2 + (A + 
n - 2)B4 ,

P2n = [2A(A - 1)(A + n - 1)2 + 2(A - 1)(A + n - 1)3 + (n - 1)(A + n - 1)2]B +[2(A + n - 1)(A + n - 2) + 2(A - 1)(A + n 
- 1) + (n - 1)]B3 ,

P2k = {-(n - k - 1)[A(A - 1)(A + n - 1)(k(A + n - 1) + kA + n - k)
+(A + n - 1)(kA + n - k)(2(A - 1)(A + n - 1) + (n - 1))]
-k[2A(A - 1)(A + n - 1)(kA + n - k) + (A + n - 1)2 ((3k - 1)A2 + 2(n - 2k)A - (n - k)) +2A(A - 1)(A + n - 1)2 + (A + 

n - 1)2 (2(A - 1)(A + n - 1) + (n - 1))]
+2(A - 1)2 (A + n - 1)(kA + n - 1) + (A - 1)(A + n - 1)2 (k(3A - 1) + 2(n - 1))}B
+{-(n - k - 1)[(A + n - 2)(k(A + n - 1) + kA + n - k) + k(2(A - 1)(A + n - 1) + (n - 1))]
-k(2(A + n - 1)((3k - 2)A + n - 2k)
+(k - 1)(A + n - 1)2 + (3k - 1)A2 + 2(n - 2k)A - (n - k) + 2(A + n - 1)(A + n - 2) +2(A - 1)(A + n - 1) + (n - 1)) + 

2(A + n - 1)(3kA + n - 2k - 1) + k(A + n - 1)2 +(A - 1)(k(3A - 1) + 2(n - 1))}B3 - k(k - 2)B5 ,
P3n = (A - 1)(A + n - 1)3 ((n - 1)A - 1) + (A + n - 1)[(n - 2)(A + n - 2)(3A + n - 2) +(n - 2)(A - 1) - (A + n - 1)(A + 

n - 2) - 2(n - 1) - (A - 1)(2A + 2n + 7)]B2 +[(n - 2)(A - 1)(A + n - 1) + 2(A + n - 2)]B4 ,
P4n = (A + n - 1)2 [(n - 2)(n - 3)(A - 1)2 + 2(n - 2)2 (A - 1)(A + n - 2)
+2(n - 2)(A - 1)(2A + n - 3) + 2(n - 1)(A - 1)2 + (n - 1)(n - 2)(3A + n - 4) - (n - 1)2]B
+(n - 1)[(n - 2)(A + n - 1)(A + n - 2) + 2(n - 1)(A + n - 1)
-(A - 1)(A + n - 1) + (A + n - 2) - (n - 1)]B3 ,
P3k  = n(A - 1)(A + n - 1)2 (kA + n - 1)((n - 1)A - 1)
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+{(n - k - 1)(n - k - 2)(A + n - 2)((A + n - 2)(kA + n - k)
+2k(A - 1)(A + n - 1)) + 2k(n - k - 1)((k - 1)(A - 1)(A + n - 1)2

+(A + n - 1)(2A + n - 3)((2k - 1)A + n - k) + (A - 1)(A + n - 2)(kA + n - k))
+(n - k - 1)(-kA(A - 1)(A + n - 1) - (k(A + n - 1) + kA + n - k)(2(A - 1)(A + n - 1) +(n - 1)) + k(A - 1)2 (A + n - 1) - (A 

+ n - 1)(A + n - 2)(kA + n - k)
+((A - 1)(A + n - 1) - (A + n - 2))(k(A + n - 1) + kA + n - k)) - k[A(A - 1)(kA + n - k) +2(A + n - 1)((3k - 1)A2 + 

2(n - 2k)A - (n - k)) + (A + n - 1)2 ((3k2 - 9k + 5)A +k(n - 3k) - (2n - 5k)) + k(A - 1)2 (kA + n - k) + 2(A + n - 1)((3k2 - 
3k + 1)A2

+(2k - 1)(n - 3k)A - k(2n - 3k))] + (n - 2)(n - k - 1)(k(A - 1)(A + n - 1)
+(A + n - 2)(k(A + n - 1) + kA + n - k)) + k(n - 2)((k - 1)(A + n - 1)2

+(A - 1)(kA + n - k) + 2(A + n - 1)((2k - 1)A + n - 2k))
+k((n - k - 1)(A + n - 1)(A + n - 2)(3A + n - 4) - A(A - 1)(A + n - 1)
-2(A + n - 1)(2(A - 1)(A + n - 1) + n - 1) - (A + n - 1)2 (A + n - 2) + (A - 1)2 (A + n - 1) +2(A + n - 1)((A - 1)(A + 

n - 1) - (A + n - 2)) + (k - 1)(A - 1)(A + n - 1)3

+(A + n - 1)(2A + n - 3)((k - 1)(A + n - 1) + (k - 1)A + (n - k))
+(A + n - 1)(A + n - 2)((k - 1)A + n - k)) + (A - 1)2 (kA + n - 1)
+2(A - 1)(A + n - 1)(k(3A - 1) + 2(n - 1)) + (A + n - 1)2 (3kA + n - 2k - 1)}B2

+{2k(k - 2)(n - k - 1)(A + n - 2) + k(3k - 2)A + k(n - 2k) - 2k(k - 1)(A + n - 1) +k((3k2 - 9k + 5)A + k(n - 3k) - (2n 
- 5k)) + 2k(k - 1)(k - 3)(A + n - 1) + k(k - 1)(n - 2) -2k(A + n - 2) + k(k - 1)(A + n - 1)(A + n - 2) + k(3kA + n - 2k - 1) 
+ 2k(A + n - 1) +(3kA + n - 2k - 1)}B4 ,

P4k = {(n - k - 1)(n - k - 2)(A - 1)(A + n - 1)[k(A - 1)(A + n - 1) + 2(A + n - 2)(kA + n - k)] +2k(n - k - 1)(A - 1)(A 
+ n - 1)((A + n - 1)((2k - 1)A + n - 2k) + (2A + n - 3)(kA + n - k)) +(n - k - 1)(A + n - 1)((A - 1)2 (k(A + n - 1) + kA + 
n - k) + (A - 1)

-(A + n - 2)(kA + n - k)) + k(A + n - 1)(2k(A - 1)2 (kA + n - k) + (A + n - 1)(3k2 - 3k + 1)A +(2k - 1)(n - 3k)A - 
k(2n - 3k)) + (n - 2)(n - k - 1)(A + n - 1)((A - 1)(k(A + n - 1)

+kA + n - k) + (A + n - 2)(kA + n - k)) + k(n - 2)(A + n - 1)(2(A - 1)(kA + n - k)
+(A + n - 1)((2k - 1)A + n - 2k)) + k(A + n - 1)2 ((n - k - 1)(A - 1)2 + 2(A - 1)(A + n - 2) +2(A - 1)2 + (A - 1)(A + n 

- 1) - (A + n - 2) + (A - 1)((k - 1)(A + n - 1) + (k - 1)A + n - k) +(2A + n - 3)((k - 1)A + n - k))}B + {(n - k - 1)(n - k - 2)
(A + n - 2)2

+2k(n - k - 1)[(k - 1)(A + n - 1)(2A + n - 3) + (A + n - 2)((2k - 1)A + n - 2k)]
-(n - k - 1)[k(2(A - 1)(A + n - 1) + n - 1) + (A + n - 2)(k(A + n - 1) + kA + n - k)
+k(A + n - 2)] + k(-((3k - 1)A2 + 2(n - 2k)A - (n - k)) + 2(A + n - 1)((3k2 - 9k + 5)A +k(n - 3k) - (2n - 5k)) + (k - 1)

(k - 3)(A + n - 1)2 + (3k2 - 3k + 1)A2 + (2k - 1)(n - 3k)A -k(2n - 3k)) + k(n - 2)[(n - k - 1)(A + n - 2) + 2(k - 1)(A + n - 
1) + (2k - 1)A + n - 2k]  +k[(n - k - 1)(A + n - 2)2 - 2(A - 1)(A + n - 1) - (n - 1) - 2(A + n - 1)(A + n - 2) +(A + n - 1)2 
((A - 1)(A + n - 1) - (A + n - 2)) + (k - 1)(A + n - 1)2 (2A + n - 3)

+(A + n - 2)((k - 1)(A + n - 1) + (k - 1)A + n - k)] + (A - 1)(k(3A - 1) + 2n - 2) +2(A + n - 1)(3kA + n - 2k - 1)}B3 
+ k[(k - 1)(k - 4) + 1]B5 ,

P5n = (A + n - 1)(2(n - 2)2 (A - 1)(A + n - 1) + (n - 1)(n - 2)(A + n - 2)2 +2(n - 2)(A - 1)(A + n - 2) + (n - 1)(A - 1)2 
+ 2(n - 1)(A - 1)(A + n - 1)

+(n - 1)(n - 2)(A - 1) + 2(n - 1)(n - 3)(A + n - 2))B2 - (n - 1)(A + n - 2)B4 , 
P6n = (n - 1)[(n - 2)(A + n - 1)(A + n - 2) + (A - 1)(A + n - 1) - (A + n - 2)]B3 ,
P5k = [(n - k - 1)(n - k - 2)(2k(A - 1)(A + n - 1)(A + n - 2) + (A + n - 2)2 (kA + n - k)) +2k(n - k - 1)((k - 1)(A - 1)(A 

+ n - 1)2 + (A + n - 1)(2A + n - 3)((2k - 1)A + n - k) +(A - 1)(A + n - 2)(kA + n - k)) + (n - k - 1)(k(A - 1)2 (A + n - 1) 
+ ((A - 1)(A + n - 1)

-(A + n - 2))(k(A + n - 1) + kA + n - k)) + 2k(A + n - 1)((3k2 - 3k + 1)A2 +(2k - 1)(n - 3k) - k(2n - 3k)) + k(k - 1)(A 
+ n - 1)2 (3(k - 1)A + n - 3k)

+(n - 2)(n - k - 1)(k(A - 1)(A + n - 1) + (A + n - 2)(k(A + n - 1) + kA + n - k)) +k(n - 2)((A - 1)(kA + n - k) + 2(A 
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+ n - 1)((2k - 1)A + n - 2k) + (k - 1)(A + n - 1)2 )
+k(A + n - 1)(2(n - k - 1)(A - 1)(A + n - 2) + (n - k - 1)(A + n - 2) + (A - 1)2

+2(A - 1)(A + n - 1) - 2(A + n - 2) + (k - 1)(A - 1)(A + n - 1)
+(2A + n - 3)((k - 1)(A + n - 1) + (k - 1)A + n - k) + (A + n - 2)((k - 1)A + n - k))]B2

+[4k(k - 1)(n - k - 1)(A + n - 2) - k(n - k - 1)(A + n - 2)
+k(k(A - 1)2 (kA + n - k) + (3k2 - 9k + 5)A + k(n - 3k) - (2n - 5k))
+2k(k - 1)(k - 3)(A + n - 1) + k(k - 1)(3(k - 1)A + n - 3k)
+2k(k - 1)(k - 2)(A + n - 1) + 2k(k - 1)(n - 2) - k(A + n - 2)
+k(k - 1)(A + n - 2) + k(k - 1)(A + n - 1)(A + n - 2) + 3kA + n - 2k - 1]B4 ,
P6k = [k(n - k - 1)((n - k - 2)(A + n - 2)2 + 2k(k - 1)(A + n - 1)(2A + n - 3) +2k(A + n - 2)((2k - 1)A + n - 2k) + (A - 1)

(A + n - 1) - (A + n - 2)) +k((3k2 - 3k + 1)A2 + (2k - 1)(n - 3k)A - k(2n - 3k))
+2(k - 1)(A + n - 1)(3(k - 1)A + n - 3k) + (k - 1)(k - 2)(A + n - 1)2

+k(n - 2)(n - k - 1)(A + n - 2) + 2k(k - 1)(n - 2)(A + n - 1) + k(n - 2)((2k - 1)A + n - 2k)
+k(n - k - 1)(A + n - 2) + k(A - 1)(A + n - 1) - k(A + n - 2)
+k(k - 1)(A + n - 1)(2A + n - 3) + k(A + n - 2)((k - 1)A + n - 1 + (k - 1)A + n - k)]B3 +k(k - 1)(2k - 5)B5 .

For the purpose to get the special solution of equation (3.1.2), firstly, we take B = 0. In this case, we have
P1k = -(A - 1)(A + n - 1)2 (kA + n - 1)[(n - 1)A + 1],

P1n = A(A - 1)(A + n + 1)3 ,  P2n = 0,  P2k = 0,
P3n = (A - 1)(A + n - 1)3  [(n - 1)A - 1],  P4n = 0,

P3k = n(A - 1)(A + n - 1)2 (kn + n - 1)[(n - 1)A - 1],
P4k = P5n = P6n = P5k = P6k = 0.

By putting these into (3.1.2) we have
   (3.1.3)

Since 1, sinh y are liner independent we have
               (3.1.4)

and
          (3.1.5)

We see that (3.1.4) and (3.1.5) are the equations with respect to A. In the case of n = 3, we see that A ≠ -n + 1 and we have 

A = 1, -  . In the following, we assume n > 3. It is evident that A = 1 is a solutions of equation (3.1.4) and (3.1.5).  So we 
only need to consider the solutions with A ≠ 1. As A ≠ 0, A ≠ -(n - 1), it is easy to see that A is a solution of equations (3.1.4) 
and (3.1.5) if and only if it is the solution of following equation:

                               (3.1.6)
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Setting x = n/(A + n - 1), we can write equation (3.1.6) as follows:

i.e.

           (3.1.7)

Noting that for any real number t we have

So we have

As the derivatives of the functions on the both sides of above equation are equal, we have

For the same reason, we also have

Making use of these identities, we can write (3.1.8) as follows:
-(n - 1)x - (1 - x)n-1 + Ax[(1 - x)n -2 - 1] + n = 0.                                       (3.1.9)

Taking x = n/(A + n - 1) back to (3.1.9), we get
(A - 1)n-2((n - 1)A + 1)2 = 0.                                                 (3.1.10)

This shows A = 1,  are the solutions.
On the following, we considered B ≠ 0, For the implicity of the equation,we only consider n = 4. We first simplify 

(2.1.11),and get the following equation :
              (3.1.11)

from (2.2.2) and (3.1.1) we have
                                             (3.1.12)

                                            (3.1.13)

                        (3.1.14)

By taking (2.2.2) , (3.1.1) , (3.1.12) , (3.1.13) , (3.1.14) into (3.1.11) and simplify it we get
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   (3.1.15)

since B ≠ 0 ,so y′ = A sinh y + B cosh y ≠ sinh y, we get

    (3.1.16)

then we take y′ = A sinh y + B cosh y into (3.1.16),we can get

 (3.1.17)

Since{sinh4 y, sinh3 y cosh y, sinh2 y, sinh y cosh y, 1} are linear independence in any interval, so equation(3.1.17) is 
equivalent to:

                            (3.1.18)

Solving the equations,we get the solution of (3.1.18):
                                                             (3.1.19)

3.2 A classes of nth order Willmore hypersurfae in Rn+1

Since the equation is very difficult, we can not get all the slotions, In the above section, we get two solutions of equation 
(3.1.2) satisfiys y′ = A sinh y + B cosh y:

                                                   (3.2.1)

and when n = 4 we get
                                                                 (3.2.2)

So, we have:
Theorem 3.1:    Let Sn-1 be the unit sphere in n-dimensional Euclidean space Rn , ξ = (ξ1 ,…, ξn) be the position vector 

of a point of Sn-1 in Rn . γ = (α, β) : R1 → R2  be a smooth curve in R2.
For the general nif the revolution hypersurface φ(t, ξ) = (αξ, β) is nth order Willmore hypersurface. then the equation of 

γ is:

For n = 4 if the revolution hypersurface φ(t, ξ) = (αξ, β) is 4th order Willmore hypersurface.then the equation of γ is:
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Where is take the integral of  . c0 , c, r0 , r , a0 , a1 , a2 , c1 are constant.
Proof : For general n,from (3.1.1) and (3.2.1) we get:
Case 1.    A = 1, B = 0. y′ = sinh y .
From (2.2.2), (2.2.3), we have: λ = µ = c1 (constant), and φ is totally umbilical.

And from (2.2.1), (2.2.2) we have:

By integrating it, we have:

We can write the equation of γ as:
α2 + (β - c0 )

2 = c2                                                                     (3.2.3)

Case 2.    A = , B = 0. y′ =  sinh y .

Integrating sinh  on both side, we have :

And:

So

From the first equation of (2.2.1) we get:

By integrating it we get:

From the second equation of (2.2.1) ,we have :

By itegrating it we have:

from  we get :
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So the equation of γ can be written as :
                             (3.2.4)

Where u =  - a1 ,  is take the integral of  . a0 , a1 , a2 , c0 , c, r0 , r are constants.

Case 3.    For n = 4,from (3.1.1) and (3.2.1) we get:

By calculating the first equation of (2.2.3), we have λ′ = 0, and λ = constant, write . From the first equation of (2.2.2) 
we have:

So

Furthermore, from the second equation of (2.2.1) and the first equation of (2.2.2) we have:

By integrating it we get:

So the equation of γ is:

                                                          (3.2.5)

Let α(t)(ξ1 , ξ2 ,…, ξn) = (x1 , x2 ,…, xn), αξi = xi, β(t) = xn+1 .
ξ := {(ξ1 , ξ2 ,…, ξn) ∈ Rn | ∑ξ2

i = 1},(1 ≤ i ≤ n). then φ = (α(t)ξ, β(t)) = (x1 , x2 ,…, xn+1).
Theorem 3.1’:    For general n, The following hypersurfaces in Rn+1  are nth order Willmore

hypersurface :
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is 4th order Willmore hypersurface

Where  is take the intgral, c0 , c, r0 , r , a0 , a1 , a2 , c1 are constants.  And any hypersurface which is conformal 
equivalent to Sn , Un  or T4  is nth order Willmore or 4th Willmore.

Remark: (i) When n = 3, Theorem 3.1’is Theorem 3.1 in [8].
(ii) when n is odd, β is an algebraic fanction of α; When n is even β is an transcendental fanction of α . This is a well 

thing.
(iii) In this paper we only get a classes of special Wn -minimal hypersurfaces in Euclidean space, Wo can also concider 

other Wn -minimal hypersurfaces in Euclidean space.
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