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1. Introduction
Throughout this paper K is a algebraically closed field and which are ideals of H and L, = J; R, = J-r Also re-

has characteristicO, / is a finite -dimensional K — Hopf*  call from[1] that L gand R, are 1-dimensional,and there
algebra with antipode .S which is a diagonalizable operator and

Cisa K —

coalgebra . There is a convenient adaptation of the

exists a grouplike element d such that R, = L,, where d is
called the distinguished grouplike. We can perform the same
constructions on the dual algebra H " . More precisely, for any
neG(H")= Alg(H,K) we can define
L ={xe H|hx =n(h)x foranyh € H}
R ={ye H|yh =n(h)yforanyh € H} .

We remark that if we keep the same definition we gave for

Heyneman—Sweedler! singma notation for coalgebras

and  comodules as  A(c)= z Cay ® Co and

plc)= ZCH) ®c, VeeC.
Definition1.1™ A grouplike elements of C'is a ¢ € C which

satisfies the following conditions: A(¢) = ¢ ® ¢ and &(c) =1,
& (©) (©) L o » then Lﬂ should be a subspace

the set of grouplike elements of C' is denoted G(C).
We firstly recall the following actions as module structures:

H'is a left H —module via(h — h*)(g) _ h*(gh) of this subspace via the canonical

of H™ The set L, , as defined above ,is just the preimage

for h,g e H,h* € H" Isomorphism 6 : H — H™".From the above it follows
H'isarigt H —module via(h < 1" )(g) = h" (hg) that the subspaces L, and R, are ideals )
forh,g e H,h' e H" of dimension 1 in H ,and there exists & € G(H ") such
H is aleft hH' —module via #° —> :Zh*(hz)hl that R, = L_. This element ¢ is the
tor heH heH distinguished grouplike element in H .
H is aright H' —module via /1 «<— " = Z B ()Y Remark1.2™" If H is semisimple and cosemisimple, then
for B e H  heH v distinguished grouplike in A and

If g € H is a grouplike element as in Definition1.1, we can H"are equal to 1 and &, respectively.

Lemmal.3® Suppose that H is a Hopf algebra over K .

denote by
L, ={meH'\W"m="h"(g)mforanyh" € H"} Then
and The only subspaces of H which are both a left ideal and left
R,={ne H*‘nh* = h*(g)nforanyh* € H"} coideal of H are {O} and

H.
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If H contains a non-zero finite -dimensional left or right
ideal. Then H is finite-dimensional.

Lemmal.4® Let Cbe a finite-dimensional coalgebra
over K. ThenU > U™ is a one-one inclusion reversing
correspondence between the set of coideals (respectively
subcoalgebras, left coideals, right coideals) of C and the set of
subalgebras (respectively ideals, left ideals, right ideals) of the
dual algebra C~.

Lemmal.5P If C (K) is a simple coalgebra over K for
all n>1. Then any simple coalgebra over K is isomorphic to
C,(K) forsome n>1.

Lemmal.6 Suppose U and V be vector spaces over K
and F': V" — U isthe transpose ofalinearmap f :U — V'
If J and [ are subspaces of ¥ andU” respectively. Then

F(J)c 1 implies f(I")cJ".

Remark1.7% Forasubspace V of U let resy U™ — V"
betherestrictionmap whichisthusdefined by res,l// W )=u"\V
forall u* € U” . Notice that Ker(res; )=V ". Hence

U’ / V*=V" as vector spaces. Therefore we have the
formula Dim(U*/Vl) = Dim(V"). In particular ¥ "isa

cofinite subspace of U if and only if V" is a finite-dimensional

subspace of

U . Also notice that reSIl,] =i ,where i:V — Uis the
inclusion map.

Definitionl.8#!  For aeH, a*eH", beH,
define endomorphisms L(a") and R(a”) in End(H) by
L(a")b)y=a"—b and R(a")b)=b<a’,onthe
other hand, /(a)and r(a) in End(H) by l(a)(b)=ab
and r(a)(b) =ba .

Proposition 1.951 Suppose that S' is the antipode of H.
Let A be a left integral ford and @ be a right integral forH *
which satisfy< A, @ >=1. Then

Tr(r(a)oS*oR(a")) =< w,a><a", A > forall
acH, a"eH".

The functional o eH" defined by
o,.(a)=Tr(r(a)>S”) forall a € H is aright integral for
H.

Proposition 1.10™ Suppose that S is the antipode of H.
Then the following are equivalent:

H and H " are semisimple.

Tr(S*) = 0.
Proposition 1.11%) Suppose that S is the antipode of H.

Let g and & be the distinguished grouplike elements for

H and H" respectively. ThenS* = T, ° (2'0[,1 )

or equivalently,S*(a) = g(a > a < a " )g™", forall
aeH.

If H and H " are unimodular , in particular if H and H~
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are semisimple, then §* =1 i
Tr(S*) = (Dim(H)Tr(S*|, H).
Theorem 1.121 Let H be a Hopfalgebra over K. Then the

following are equivalent:

All left H — comodules are completely reducible.

</1,1>¢0f0rsomeﬂejr.

H = K1® C for some subcoalgebraC of H .

<Al >¢0f0rsomeﬂej.l

All right H — comodules are completely reducible.

Theorem 1.131Let H be a cosemisimple Hopf algebra with
antipode S. Then S*(C) = C for all simple subcoalgebrasC

of H.
2. The order of the antipode

Lemma 2.1
neGH"), geG(H), mne H and

that m — x = x < n. ThenmeLgandneRg.

Suppose

X € LT7 such

Proof Leth”,g" € H".Then
(g"h*m)(x) = (& h" ) xm(x,))
=(g""")(g)
=g (8)h'(g)
=Yg (m(x )5 ) ()
=(g"h" (g)m)(x)
which shows that (g"(h'm—h"(g)m))(x)=0, so
(W'm—h"(g)m)(x < H")=0.But
x« H =H, L «<n=L,
L, < H" = H (applied for the dual of H ). This
shows that &"m =h"(g)m, and so m e L,. The fact

since and

thatn € R < is proved in a similar way.
Corollary2.2 If me H",x € L_,and m —> x =1, then
meL and x <—m=d.
Proof If 1" € H”, then
(e m) = 3 (e ym(x,)
= (mh")(x)
= h(d)m(x)
h" (m(x)d)
Applyingé to the relation Z m(x,)x, =1 we get
m(x) =1. This shows that X <— m = d. The fact that
m € L, is proved by Lemma 2.1.
Lemma 2.3 Suppose x€L,, ge€G(H), me H"

such that m — x = g. Then for any
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h' e H wehave n(g)h"(1) =Y 1" (x,)m(gx,).
AR )= h' ®h;,
g =m — xand 717(g)x = gx ,we have
@ )= n(2)k (g Vi (2)
— I (g™ (m(x,)xm(2))
= Iy’ (g ™" )h; (m(gx,)ex,)
=D h'(g " gx, )m(gx,)
= Zh*(XL)m(gxz)
Lemma24 Let xeL,, geG(H), m e H",and
n € G(H") such that m — x = g. Then
any heH
S(g'n—->h)=(m<h)—>x.
Proof Ifh" € H". Then
W (S(g™ (n— ) =D h (S(h)g(h,)
=>"n(g)h" (S(h)gm(g'h,)
=n(2)(h*S)n)(g'h)
= > (' S)ym(g™ Mn(g)h; (1)
= > (W S)m(g ™ hyh; (m(gx,)x,)
= Z (hl*S)(g_lhl )U(g_lhz )h; (m(gx,)x,)
= 2 1 (S(h))hy (m(gg ™' hx,)g ™ hox;)
= 21 (SU)gg™ hyxym(hyx, )
= Zh*(xlm(hxz))
=h"((m <« h)—> x).
Remark 2.5 If we write the formula from Lemma2.4 for the

Hopf algebras H, H“? , H”” and H” ,we get that for any
h € H the following relations hold:

Proof From the fact that

for we have

Suppose xelL,m—>x=g, then
S(g™'(n—>h)=(m <« h)—>x;
Suppose XER, ,m—>x=g, then
SN —>mgH=(h—>m) —>x;
Suppose XER ,x<n=g, then
S((h<mg™")=x«(h—>n);
Suppose xelL ,x<n=g, then

S (g (hen)=x<(n<h).
In particular
If xelL,m—>x=1, thenS(h)=(m<«h)—>x
@.1)
If xeR,=L,m—>x=1, then
S a—-h=h->m—>x (22

If xeR,=L,,x<—n=d, then
S(h—a)d " Y=x«(h—n) 23
If xel,x<-n=g, then
S g 'h)y=x—(n<h) (2.4)
Theorem 2.6 For any he H we have

32 | Yugiu Wei et al.

S*hy=d(a—h—a)d.

Proof  Suppose xe€L =R ,and meH" with
m —> x =1. Corollary 2.2 shows that m € L, and m € L,
and x <— m = d . Moreover, we have

(S*(h) = m)— x=S"(a — S*(h)

(by 2.2))
—S(S* (@ — h)
— S(S (@ —h)
=(m< S (a—>h) >x (by
2.1))

Since the map from H™ to H, sending h" € H to
h" — x € H is bijective, we obtain
S*hy->m=m«S*(a—>h).
On the other hand,
x—(m«S*(a—>h) =S"'(d'S*(a = h)
(by (2.4))
=S87(S*(d " (a — h)))
=S(d (o — h))
= S(d (o — h)dd™)
=S(d (@ = h<a™Md)«a)d™)
=x«((d ' (a—=>ha)d)—>m)
(by (2.3))
Since the map h" > (x<h")from H toH s
bijective, we obtain that
me—S(a—-h=d (a>h—a)d)—>m
We got that
S*hy->m=d (a>h—a)d)—>m
then the formula follows from the bijectivity of the map
h> (h— m)from HtoH" .
Theorem 2.7 Let H be a finite dimensional Hopf algebra.
Then the antipodeS has finite order.
Proof By Theorem 2.6, we obtain by induction that
S“(hy=d™"(@" = h<a™")d"
for any positive integer 1. Since G(H )and G(H") are
finite groups, their elements have finite orders, so there exists p
forwhich d” =1 and a” = €. Thenit follows that $*” = 1.
3 Characterizations of semisimple Hopf algebras
Semisimlpe Hopf algebras are finite-dimsnsional by part (2)
of Lemma 1.3. We characterize finite-dimensional Hopf algebras
which are semisimple in the algebraically closed characteristic
zero case. To this end we calculate a trace.
Lemma3.1 If C is a simple coalgebra over K, and T is a
diagonalizable coalgebra automorphism of C' . The
Tr(T) = (2 AN A
where A, 4,,--+, A, are eigenvalues for 7T .
Proof By lemmal.5 we obtain that C = C, (K) for some
n > 1. Thus we may assume
C =C, (K). The crux of the proof will be to show that
there is a simple left coideal M of C
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such that 7(M') € M. Necesarily Dim(M) = n.

T"is an algebra automorphism of C~ =M, (K).
By Skolem-Noether Theorem, there is an invertible matrix
ueM, (K) suchthat T (a) = uau™' forall a € M, (K).
Identify C* =M ,(K) with End (V') ,where V'is an n—
dimensional vector space over K. Since K is algebraically
closed, u has an eigenvalue A € K. Let v €V be a non-zero
vector satisfying u(V') = Av. Regard End(V)andV as left
End (V') —modules via function composition and evaluation
respectively. Then V is a simple module and the evaluation map

e :End(V)—>V given by e (a)=a(v) for all
aecEnd(V)

is a module map. Therefore
L=Ker(e,))={ace End(V)|a(v) =0} is a maximal left
ideal of

End(V)of codimension 7n°—n. Observe that
T*(L)c L. Set M = L".Then M is a minimal left coideal
of C by Lemma 1.4 and T(M) < M by Lemma 1.6. and
Using Remark1.7 we see that Dim(M ) = n.

Since T is diagonalizable and 7' (M) < M it follows that
the restriction 7’ |M is diagonalizable. Let{m, ,m,,---,m,}
be a basis of eigenvectors for 7 |M andlet A,---,4 € K

satisfy 7' (m;) = A,m, forall 1 <i<n. Then A,--, 4,
are non-zer scalars since T|M is noe-

one. Foreach 1 <i <n write A(m,) = Zj‘:l ¢, ®m;.
Then the ¢; ;8 satisfy the comatrix identities and thus span a
non-zero subcoalgebra D of C. Since Cis simple D = C.
Since

Dim(C) = n* necessarily the ¢; ;s from a basis for C.
Applying T & T to both sides of the

equation for A(m,) yields
zj=1 Zici,j ® m; = zj=1 T(Ci,j) ® ljmj, Therefore
T(C ) =

i,J
ﬂlﬂ;lcl.,j forall 1 <i, j <n. Since {c, },; ;, is a basis
for C we calculat

TRy =20, AA = QUL QLA

Theorem 3.2 Let H be a Hopf algebra with antipode S
over K . Then the following are equivalent.

H is cosemisimple.

Tr(S*) # 0.

H is semisimple.

S*=1,.

w:H — K defined by w(a)=Tr(r(a)
a € H is aright integral for H.

Proof (1)=>(2). Since H is cosemisimple it is the
direct sum of its simple subcoalgebras . Let C be a simple
subcoalgebra of H . Then S(C) = C By Theorem1.13 . Now
S? has finite order by part (1) of Theorem Propositionl.11.

for all

Since K is algebraically closed of
characteristic  zero  S* s diagonalizable. Thus

Tr(S*) = (z; ﬂ,l.)(z; A" where A+, A are roots
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of unity by Lemma 3.1. Since the characteristic of K is zero we
may assume that A, -, ﬂn € C, the field of compex mubers.
Thus

18210 = (X, A A = (X A, A =[S0 A

is a  non-negative real number.  Therefore
Tr(S*) =1+ ZCTF(S2|C) >1, where C runs over the
simple subcoalgebras C # K1of H . We have shown that
Tr(S*)#0.

(2)= (3). It is pretty obvious by Proposition1.10.

(3)=>(4). Assume that H is semisimple. Then H is
cosemisimple. We have just show H *

is semisimple; thus H is semisimple and
cosemisimple. In particular 77(S*) #0. Now Tr(S?)
=(Dim(H) TF(SZ‘XH H) by part (3) of Proposition
111 andS* =1 » by part (2) of Porpositionl.11. Since the
characteristic of K is not 2, the last equation implies S *isa

diagonalizable endomorphism of H with eigenvalues 1.
Choose a basis of eigenvectors for S*. Let 7 . be the number
n_be
the number belonging to -1. By the preceding trace formula

of basis vectors belonging to the eigenvalue 1 and let

n, —n_=(n, +n_)mfor some integer 7 which is not zero
since T7(S?) # 0 .Squaring both sides of this equation yields

—2n.n_=(m’ =D’ +2m’n.n_+(m* —1)n’ > 0.

Therefore n,n_ =0.Since n, # 0 necessarily n_ = 0.
We have shown S = 1,

(4)= (5). That it is very simple follows by part (2) of Prop-
osition1.9.

(5)=(1). Since @(1) = Dim(H )1 # 0, thus our proofis
complete by Theorem1.12.
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