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Abstract: The problem of error accumulation is caused by the supervision of deep neural network text generation model. In 
order to solve this problem, a text generation model based on the reinforcement of antagonistic thought training is proposed.The 
adversarial network can be generated by the proposed model, and then the adversarial network can be used for identification, 
the learning reward function can be optimized, and the generated model can be optimized to reduce the probability of error 
accumulation.More text structure knowledge can be added into the generated text model by integrating the target guidance feature 
into the actual generation process to make the generated text model have higher authenticity. In this paper, the author optimizes 
the adversarial text generation method on the basis of target-guided optimization, which can be used for reference by practitioners.
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1. Related Work
In order to ensure the smooth completion of the text generation, the relevant staff should maximize the training data based on the 

maximum likelihood four-line training recurrent neural network model, so as to improve the authenticity of the text generated by the 
guidance model[1].Bengio et al. stated that because of the difference in data used for training and testing, there was an accumulation of 
errors, which made it possible for them to achieve satisfactory maximum likelihood estimates. To solve this problem, they proposed 
a strategy of regular sampling. However, through actual verification, it is found that these methods cannot directly complete the 
formulation of neural network output loss function model, cannot guarantee the quality of sample sampling, and cannot improve the 
authenticity of the generated text .

Generative adversarial networks (GAN)based on adverssive thought training generation model will be based on real data layout[2]. 
In order to weaken the influence of discrete text data on GAN, Gumble GAN and Wasserstein GAN optimize the internal calculation 
method of GAN[3]. Two methods of Gumble-Softmax distribution and Wasserstein divergence are introduced in order to redistribute 
discrete labels and obtain the continuous approximation of Softmax function[4]. It provides more possibilities for employees to carry 
out generative model optimization and discriminant model optimization.
2. Text generation technology based on the idea of strengthened confrontation
2.1 Basic Process

In this paper, the text sequence generation model used by the author mainly consists of three modules, namely generator, 
discriminator and target guidance module. At the same time, the text sequence generation problem is defined again in combination 
with the model structure: based on the sequence data set in the real text structure, a generator Cθ based on the training parameterθis 
used to generate the sequence.In this paper, the text sequence generation model used by the author mainly consists of three modules, 
namely generator, discriminator and target guidance module. At the same time, the text sequence generation problem is defined 
again in combination with the model structure: based on the sequence data set in the real text structure, a generator Cθ based on the 
training parameterθis used to generate the sequence.x1：T=(x1,x2，····,xt····, xT), t∈(1,T), x∈Y,In this sequence, the full 
sequence length is represented by T, the dictionary is represented by Y, the time is represented by T, st is the definition of the generated 
sequence,st=(x1,x2,····,xt), St ‘represents the complete sequence completed using Monte Carlo search,that is st’=(x1,x2,····,x
t+1,xt+2,····,xT),The choice of word Xt +1 is completed under the definition of action at, and the training parameter of φ is used 
to identify its Dφ, so that the discriminator can simultaneously obtain the real sentence and the sentence st ‘[9] generated by MC Search 
completion generator.The discriminator module has two main functions, one is to act as a reward function to evaluate the quality of the 
sentences generated by the generator, the other is to remember the feature extraction layer to complete the feature vector FT extraction, 
and then pass it to the target guidance module Rμ. Through training, Rμ can help the high-dimensional feature vector to complete the 
change operation and obtain the target embedding vector ωt, which provides help for guiding the generator to optimize. Based on ωt, 
generator Cθ is generated in the corresponding environment to complete the acquisition of xT +1 of the next generated word. The 
specific process is shown in Figure 1:
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           Figure 1: Enhanced adversarial text generation with fused goal guidance                                 Table 2:  NLL performance of each method in synthetic data

2.2 Generation Process
Discriminator D phi information extraction in the middle of the ft nature belongs to the high dimensional feature vector, if pass 

it directly to the generator module, the generator used by training reference will show exponential growth situation, so that the actual 
calculation steps increasing and used to store data, will increase the difficulty of practical training, so that the dimension disaster.
3.  Experimental Analysis

In order to analyze the effectiveness of the model used in this paper, the author compares the synthetic data with the real data. The 
specific environment and configuration are shown in Table 1:

                   Table 1: Experimental environment configuration                                    Table 3: NLL convergence of the number of iterations

The test environment Environment configuration

The operating system Windows7

The processor Intel® CoreTMi7-6700

GPU CUDA8.0

A programming language Python 3.6

Deep learning framework TensorFlow1.2.1

3.1 Experiment of synthetic data
In order to further analyze the specific performance of the model used in this paper and strengthen my understanding of the model, 

the author used some synthetic data to carry out simulation tests in the experiment. In order to fit the real structured sequence, the 
author uses the language model to understand the relationship between words, and takes the random initial LSTM as the real model 
to obtain the data needed for the experiment [5]. There are two benefits to this approach: the first is the ability to provide real training 
data, and the second is the ability to provide a specific evaluation of the performance of the generated model.
3.2 Experimental Methods

In this paper, the author used the following three methods in the actual testing process: (1) LSTM based on MLE training: 
Text model generation is completed by LSTM, and model parameters are adjusted by MLE maximum likelihood thought training 
model. (2) GumbleGAN: Obtain the continuous approximation of polynomial distribution based on SoftMax function with Gumble-
SoftMax, optimize the traditional GAN back propagation, improve the application probability of model parameters, and improve the 
authenticity of text generation. (3) SeqGAN: Based on the antagonistic network structure and integrating the reinforcement learning 
idea, the parameters of the formal model of the reward function are optimized. Comparing the above three methods with the model in 
this paper, the experimental results of synthetic data are shown in Table 2 and Figure 3:
4. Conclusion

According to the study in this paper, the use of the enhanced confrontation training method can improve the generation of model 
text, and in the actual process, more intermediate information can be generated for the reference of researchers, which can effectively 
improve the effectiveness of the model.
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indicators MLE Gumble GAN Seq GAN Proposed 
model

NLL 9.017 8.883 8.587 7.036
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