Carbon emission allowance price forecasting for China Guangdong carbon emission exchange via the neural network
Abstract
Carbon emission allowance price forecasting is a significant issue for policy makers and investors with the world transitioning to green energy and devoting enormous efforts to be more sustainable. This study explores usefulness of the nonlinear autoregressive neural network for this forecasting problem in a dataset of daily closing prices of carbon emission allowances traded in China Guangdong Carbon Emission Exchange during 19 December 2013–20 August 2021. Through examining various model settings across the algorithm, delay, hidden neuron, and data splitting ratio, the model leading to generally accurate and stable performance is reached. Usefulness of the machine learning technique for the price forecasting problem of the carbon emission allowance price is illustrated. Results here might be used on a standalone basis as technical forecasts or combined with fundamental forecasts to form perspectives of price trends and perform policy analysis, which could better assist different stakeholders in understanding energy cost and planning for green transition.
References
Xu X. Contemporaneous causal orderings of US corn cash prices through directed acyclic graphs. Empirical Economics. 2016; 52(2): 731-758. doi: 10.1007/s00181-016-1094-4
Byun SJ, Cho H. Forecasting carbon futures volatility using GARCH models with energy volatilities. Energy Economics. 2013; 40: 207-221. doi: 10.1016/j.eneco.2013.06.017
Xu X. Short-run price forecast performance of individual and composite models for 496 corn cash markets. Journal of Applied Statistics. 2016; 44(14): 2593-2620. doi: 10.1080/02664763.2016.1259399
Segnon M, Lux T, Gupta R. Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models. University of Pretoria; 2015.
Segnon M, Lux T, Gupta R. Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models. Renewable and Sustainable Energy Reviews. 2017; 69: 692-704. doi: 10.1016/j.rser.2016.11.060
Dutta A. Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk. Journal of Cleaner Production. 2018; 172: 2773-2781. doi: 10.1016/j.jclepro.2017.11.135
Xu X. Corn Cash Price Forecasting. American Journal of Agricultural Economics. 2020; 102(4): 1297-1320. doi: 10.1002/ajae.12041
Benschopa T, López Cabreraa B. Volatility modelling of CO2 emission allowance spot prices with regime-switching GARCH models. University of Pretoria; 2014.
Xu X. Contemporaneous and Granger causality among US corn cash and futures prices. European Review of Agricultural Economics. 2018; 46(4): 663-695. doi: 10.1093/erae/jby036
Haile MG, Kalkuhl M, von Braun J. Worldwide acreage and yield response to international price change and volatility: a dynamic panel data analysis for wheat, rice, corn, and soybeans. Springer International Publishing; 2016. doi: 10.1007/978-3-319-28201-5_7
Kling JL, Bessler DA. A comparison of multivariate forecasting procedures for economic time series. International Journal of Forecasting. 2019; 1(1985): 5-24. doi: 10.1016/S0169-2070(85)80067-4
Jin B, Xu X. Machine learning predictions of regional steel price indices for east China. Ironmaking & Steelmaking: Processes, Products and Applications. 2024. doi: 10.1177/03019233241254891
Bessler DA. Adaptive expectations, the exponentially weighted forecast, and optimal statistical predictors: A revisit. Agricultural Economics Research. 1982; 34(1982): 16-23. doi: 10.22004/ag.econ.148819
Jin B, Xu X. Pre-owned housing price index forecasts using Gaussian process regressions. Journal of Modelling in Management. 2024. doi: 10.1108/jm2-12-2023-0315
Westerhoff F, Reitz S. Commodity price dynamics and the nonlinear market impact of technical traders: empirical evidence for the US corn market. Physica A: Statistical Mechanics and its Applications. 2005 Apr 15;349(3-4):641-8. doi: 10.1016/j.physa.2004.11.015
Jin B, Xu X. Contemporaneous causality among price indices of ten major steel products. Ironmaking & Steelmaking: Processes, Products and Applications. 2024. doi: 10.1177/03019233241249361
Brandt JA, Bessler DA. Composite Forecasting: An Application with U.S. Hog Prices. American Journal of Agricultural Economics. 1981; 63(1): 135-140. doi: 10.2307/1239819
Jin B, Xu X. Wholesale price forecasts of green grams using the neural network. Asian Journal of Economics and Banking. 2024. doi: 10.1108/ajeb-01-2024-0007
Bessler DA, Chamberlain PJ. Composite Forecasting with Dirichlet Priors*. Decision Sciences. 1988; 19(4): 771-781. doi: 10.1111/j.1540-5915.1988.tb00302.x
Kim H, Moschini G. The dynamics of supply: US corn and soybeans in the biofuel era. Land Economics. 2018 Nov 1;94(4):593-613. doi: 10.3368/le.94.4.593
McIntosh CS, Bessler DA. Forecasting Agricultural Prices Using a Bayesian Composite Approach. Journal of Agricultural and Applied Economics. 1988; 20(2): 73-80. doi: 10.1017/s0081305200017611
Asafu-Adjaye J. The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy economics. 2000 Dec 1;22(6):615-25. doi: 10.1016/S0140-9883(00)00050-5
Arouri MEH, Jawadi F, Nguyen DK. Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS. Economic Modelling. 2012; 29(3): 884-892. doi: 10.1016/j.econmod.2011.11.003
Zhu B, Shi X, Chevallier J, Wang P, Wei YM. An adaptive multiscale ensemble learning paradigm for nonstationary and nonlinear energy price time series forecasting. Journal of Forecasting. 2016 Nov;35(7):633-51. doi: 10.1002/for.2395
Bessler DA, Brandt JA. Forecasting livestock prices with individual and composite methods. Applied Economics. 1981; 13(4): 513-522. doi: 10.1080/00036848100000016
de Nicola F, De Pace P, Hernandez MA. Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics. 2016 Jun 1;57:28-41. doi: 10.1016/j.eneco.2016.04.012
Bessler DA. Forecasting Multiple Time Series with Little Prior Information. American Journal of Agricultural Economics. 1990; 72(3): 788-792. doi: 10.2307/1243059
Jin B, Xu X. Forecasting wholesale prices of yellow corn through the Gaussian process regression. Neural Computing and Applications. 2024; 36(15): 8693-8710. doi: 10.1007/s00521-024-09531-2
Bessler DA, Babula RA. Forecasting Wheat Exports: Do Exchange Rates Matter? Journal of Business & Economic Statistics. 1987; 5(3): 397-406. doi: 10.1080/07350015.1987.10509604
Jin B, Xu X. Price forecasting through neural networks for crude oil, heating oil, and natural gas. Measurement: Energy. 2024; 1: 100001. doi: 10.1016/j.meaene.2024.100001
Brandt JA, Bessler DA. Forecasting with a Dynamic Regression Model: A Heuristic Approach. North Central Journal of Agricultural Economics. 1982; 4(1): 27. doi: 10.2307/1349096
Husaini DH, Puah CH, Lean HH. Energy subsidy and oil price fluctuation, and price behavior in Malaysia: A time series analysis. Energy. 2019 Mar 15;171:1000-8. doi: 10.1016/j.energy.2019.01.078
Brandt JA, Bessler DA. Forecasting with Vector Autoregressions versus a Univariate ARIMA Process: An Empirical Example with U.S. Hog Prices. North Central Journal of Agricultural Economics. 1984; 6(2): 29. doi: 10.2307/1349248
Amjady N, Hemmati M. Energy price forecasting-problems and proposals for such predictions. IEEE Power and Energy Magazine. 2006 Feb 27;4(2):20-9. doi: 10.1109/MPAE.2006.1597990
Brandt JA, Bessler DA. Price forecasting and evaluation: An application in agriculture. Journal of Forecasting. 1983; 2(3): 237-248. doi: 10.1002/for.3980020306
Qin Q, Xie K, He H, Li L, Chu X, Wei YM, Wu T. An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction. Energy Economics. 2019 Sep 1;83:402-14. doi: 10.1016/j.eneco.2019.07.026
Yang J, Haigh MS, Leatham DJ. Agricultural liberalization policy and commodity price volatility: A GARCH application. Applied Economics Letters. 2001; 8(9): 593-598. doi: 10.1080/13504850010018734
Xu X, Zhang Y. Edible oil wholesale price forecasts via the neural network. Energy Nexus. 2023; 12: 100250. doi: 10.1016/j.nexus.2023.100250
Bessler DA, Yang J, Wongcharupan M. Price Dynamics in the International Wheat Market: Modeling with Error Correction and Directed Acyclic Graphs. Journal of Regional Science. 2003; 43(1): 1-33. doi: 10.1111/1467-9787.00287
Bessler DA, Brandt JA. An analysis of forecasts of livestock prices. Journal of Economic Behavior & Organization. 1992; 18: 249-263. doi: 10.1016/0167-2681(92)90030-F
Bessler DA, Hopkins JC. Forecasting an agricultural system with random walk priors. Agricultural Systems. 1986; 21: 59-67. doi: 10.1016/0308-521X(86)90029-6
Chen DT, Bessler DA. Forecasting monthly cotton price: Structural and time series approaches. International Journal of Forecasting. 1990; 6: 103-113. doi: 10.1016/0169-2070(90)90101-G
Wang Z, Bessler DA. Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination. International Journal of Forecasting. 2004; 20(4): 683-695. doi: 10.1016/j.ijforecast.2004.01.002
Chen DT, Bessler DA, Chen DT, et al. Forecasting the us cotton industry: Structural and time series approaches. In: Proceedings of the 1987 NCR-134 Conference on Applied Commodity Price Analysis.
Bessler DA, Kling JL. Forecasting Vector Autoregressions with Bayesian Priors. American Journal of Agricultural Economics. 1986; 68(1): 144-151. doi: 10.2307/1241659
Babula RA, Bessler DA, Reeder J, et al. Modeling us soy-based markets with directed acyclic graphs and bernanke structural var methods: The impacts of high soy meal and soybean prices. Journal of Food Distribution Research. 2004; 35: 29-52. doi: 10.22004/ag.econ.27559
Yang J, Zhang J, Leatham DJ. Price and volatility transmission in international wheat futures markets. Annals of Economics and Finance. 2003; 4: 37-50.
Awokuse TO, Yang J. The informational role of commodity prices in formulating monetary policy: A reexamination. Economics Letters. 2003; 79: 219-224. doi: 10.1016/S0165-1765(02)00331-2
Yang J, Awokuse TO. Asset storability and hedging effectiveness in commodity futures markets. Applied Economics Letters. 2003; 10(8): 487-491. doi: 10.1080/1350485032000095366
Yang J, Leatham DJ. Market efficiency of us grain markets: Application of cointegration tests. Agribusiness: An International Journal. 1998; 14: 107-112.
Yang J, Li Z, Wang T. Price discovery in Chinese agricultural futures markets: A comprehensive look. Journal of Futures Markets. 2020; 41(4): 536-555. doi: 10.1002/fut.22179
Benz E, Trück S. Modeling the price dynamics of CO2 emission allowances. Energy Economics. 2009; 31(1): 4-15. doi: 10.1016/j.eneco.2008.07.003
Zhao L, Wen F, Wang X. Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect. Energy Economics. 2020; 91: 104901. doi: 10.1016/j.eneco.2020.104901
Luckow P, Stanton EA, Fields S, et al. 2015 carbon dioxide price forecast. Synapse Energy; 2015.
Zhu B, Ye S, Han D, et al. A multiscale analysis for carbon price drivers. Energy Economics. 2019; 78: 202-216. doi: 10.1016/j.eneco.2018.11.007
Paolella MS, Taschini L. An econometric analysis of emission allowance prices. Journal of Banking & Finance. 2008; 32(10): 2022-2032. doi: 10.1016/j.jbankfin.2007.09.024
Moon S, Lee DJ, Kim T, et al. An Estimation of Market-Based Carbon-Emission Prices Using Comparative Analogy: A Korean Case. The Energy Journal. 2019; 40(1_suppl): 259-276. doi: 10.5547/01956574.40.si1.smoo
Dutta A, Jalkh N, Bouri E, et al. Assessing the risk of the European Union carbon allowance market. International Journal of Managerial Finance. 2019; 16(1): 49-60. doi: 10.1108/ijmf-01-2019-0045
Liu Z, Huang S. Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading. The North American Journal of Economics and Finance. 2021; 55: 101307. doi: 10.1016/j.najef.2020.101307
Zhu B, Wang P, Chevallier J, et al. Carbon Price Analysis Using Empirical Mode Decomposition. Computational Economics. 2013; 45(2): 195-206. doi: 10.1007/s10614-013-9417-4
Ngwakwe CC. Forecasting short-term carbon emission futures price volatility: information for hedging carbon emission futures risk. Environmental Economics. 2017; 8: 6-13. doi: 10.21511/ee.08(4).2017.01
Mengdi Z, Yong SK. Forecasting the carbon price in China pilot emission trading scheme: A structural time series approach. In: The State of China’s State Capitalism. Springer; 2018.
Chen X, Wang Z, Wu DD. Modeling the Price Mechanism of Carbon Emission Exchange in the European Union Emission Trading System. Human and Ecological Risk Assessment: An International Journal. 2012; 19(5): 1309-1323. doi: 10.1080/10807039.2012.719389
García-Martos C, Rodríguez J, Sánchez MJ. Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities. Applied Energy. 2013; 101: 363-375. doi: 10.1016/j.apenergy.2012.03.046
Guðbrandsdóttir HN, Haraldsson HÓ. Predicting the Price of EU ETS Carbon Credits. Systems Engineering Procedia. 2011; 1: 481-489. doi: 10.1016/j.sepro.2011.08.070
Yan K, Zhang W, Shen D. Stylized facts of the carbon emission market in China. Physica A: Statistical Mechanics and its Applications. 2020; 555: 124739. doi: 10.1016/j.physa.2020.124739
Zhao X, Han M, Ding L, et al. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. Applied Energy. 2018; 216: 132-141. doi: 10.1016/j.apenergy.2018.02.003
Xu X, Zhang Y. An integrated vector error correction and directed acyclic graph method for investigating contemporaneous causalities. Decision Analytics Journal. 2023; 7: 100229. doi: 10.1016/j.dajour.2023.100229
Gbatu AP, Wang Z, Wesseh Jr PK, Tutdel IY. The impacts of oil price shocks on small oil-importing economies: Time series evidence for Liberia. Energy. 2017 Nov 15;139:975-90. doi: 10.1016/j.energy.2017.08.047
Xu X, Zhang Y. Contemporaneous causality among regional steel price indices of east, south, north, central south, northeast, southwest, and northwest China. Mineral Economics. 2023; 37(1): 1-14. doi: 10.1007/s13563-023-00380-4
Alade IO, Zhang Y, Xu X. Modeling and prediction of lattice parameters of binary spinel compounds (AM2X4) using support vector regression with Bayesian optimization. New Journal of Chemistry. 2021; 45(34): 15255-15266. doi: 10.1039/d1nj01523k
Alade IO, Oyedeji MO, Rahman MAA, et al. Prediction of the lattice constants of pyrochlore compounds using machine learning. Soft Computing. 2022; 26(17): 8307-8315. doi: 10.1007/s00500-022-07218-1
Alade IO, Rahman MAA, Hassan A, et al. Modeling the viscosity of nanofluids using artificial neural network and Bayesian support vector regression. Journal of Applied Physics. 2020; 128(8). doi: 10.1063/5.0008977
Adewumi AA, Owolabi TO, Alade IO, et al. Estimation of physical, mechanical and hydrological properties of permeable concrete using computational intelligence approach. Applied Soft Computing. 2016; 42: 342-350. doi: 10.1016/j.asoc.2016.02.009
Zeng S, Chen J. Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China. Sustainability. 2016; 8(7): 650. doi: 10.3390/su8070650
Zeng S, Xu Y, Wang L, et al. Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020. Energies. 2016; 9(5): 329. doi: 10.3390/en9050329
Yu A, Lin X, Zhang Y, et al. Analysis of driving factors and allocation of carbon emission allowance in China. Science of The Total Environment. 2019; 673: 74-82. doi: 10.1016/j.scitotenv.2019.04.047
Zhu B, Chevallier J. Pricing and forecasting carbon markets. Springer; 2017.
Xu X, Zhang Y. Price forecasts of ten steel products using Gaussian process regressions. Engineering Applications of Artificial Intelligence. 2023; 126: 106870. doi: 10.1016/j.engappai.2023.106870
Xiong S, Wang C, Fang Z, et al. Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm. Energies. 2019; 12(1): 147. doi: 10.3390/en12010147
Adekoya OB. Predicting carbon allowance prices with energy prices: A new approach. Journal of Cleaner Production. 2021; 282: 124519. doi: 10.1016/j.jclepro.2020.124519
Sun G, Chen T, Wei Z, et al. A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks. Energies. 2016; 9(1): 54. doi: 10.3390/en9010054
Zhou J, Wang S. A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors. Energies. 2021; 14(5): 1328. doi: 10.3390/en14051328
Jianwei E, Ye J, He L, et al. A denoising carbon price forecasting method based on the integration of kernel independent component analysis and least squares support vector regression. Neurocomputing. 2021; 434: 67-79. doi: 10.1016/j.neucom.2020.12.086
Song Y, Liu T, Liang D, et al. A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China’s Carbon Market. Ecological Economics. 2019; 157: 253-265. doi: 10.1016/j.ecolecon.2018.10.001
Chai S, Du M, Chen X, et al. A Hybrid Forecasting Model for Nonstationary and Nonlinear Time Series in the Stochastic Process of CO2 Emission Trading Price Fluctuation. Mathematical Problems in Engineering. 2020; 2020: 1-13. doi: 10.1155/2020/8978504
Hao Y, Tian C. A hybrid framework for carbon trading price forecasting: The role of multiple influence factor. Journal of Cleaner Production. 2020; 262: 120378. doi: 10.1016/j.jclepro.2020.120378
Huang Y, Dai X, Wang Q, et al. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Applied Energy. 2021; 285: 116485. doi: 10.1016/j.apenergy.2021.116485
Zhang J, Li D, Hao Y, et al. A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting. Journal of Cleaner Production. 2018; 204: 958-964. doi: 10.1016/j.jclepro.2018.09.071
Zhao LT, Miao J, Qu S, et al. A multi-factor integrated model for carbon price forecasting: Market interaction promoting carbon emission reduction. Science of The Total Environment. 2021; 796: 149110. doi: 10.1016/j.scitotenv.2021.149110
Li G, Ning Z, Yang H, et al. A new carbon price prediction model. Energy. 2022; 239: 122324. doi: 10.1016/j.energy.2021.122324
Han SK, Ahn JJ, Oh KJ, et al. A new methodology for carbon price forecasting in EU ETS. Expert Systems. 2014; 32(2): 228-243. doi: 10.1111/exsy.12084
Li H, Jin F, Sun S, et al. A new secondary decomposition ensemble learning approach for carbon price forecasting. Knowledge-Based Systems. 2021; 214: 106686. doi: 10.1016/j.knosys.2020.106686
Qin Q, He H, Li L, et al. A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction. Computational Economics. 2018; 55(4): 1249-1273. doi: 10.1007/s10614-018-9862-1
Zhu B, Ye S, Wang P, et al. A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting. Energy Economics. 2018; 70: 143-157. doi: 10.1016/j.eneco.2017.12.030
Mori H, Jiang W. A risk analysis method for carbon price prediction with hybrid intelligent model in consideration of variable selection of graphical modeling. In: Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies.
Mori H, Jiang W. An ann-based risk assessment method for carbon pricing. In: Proceedings of the 2008 5th International Conference on the European Electricity Market.
Sun W, Duan M. Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machine. Energies. 2019; 12(2): 277. doi: 10.3390/en12020277
Jaramillo-Morán MA, García-García A. Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors. Energies. 2019; 12(23): 4439. doi: 10.3390/en12234439
Ren F, Long D. Carbon emission forecasting and scenario analysis in Guangdong Province based on optimized Fast Learning Network. Journal of Cleaner Production. 2021; 317: 128408. doi: 10.1016/j.jclepro.2021.128408
Zhou J, Chen D. Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm. Sustainability. 2021; 13(9): 4896. doi: 10.3390/su13094896
Yang S, Chen D, Li S, et al. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm. Science of The Total Environment. 2020; 716: 137117. doi: 10.1016/j.scitotenv.2020.137117
Zhang X, Zhang C, Wei Z. Carbon Price Forecasting Based on Multi-Resolution Singular Value Decomposition and Extreme Learning Machine Optimized by the Moth–Flame Optimization Algorithm Considering Energy and Economic Factors. Energies. 2019; 12(22): 4283. doi: 10.3390/en12224283
Yahşi M, Çanakoğlu E, Ağralı S. Carbon price forecasting models based on big data analytics. Carbon Management. 2019; 10(2): 175-187. doi: 10.1080/17583004.2019.1568138
Jin B, Xu X. Machine learning price index forecasts of flat steel products. Mineral Economics. 2024. doi: 10.1007/s13563-024-00457-8
Wang J, Cheng Q, Sun X. Carbon price forecasting using multiscale nonlinear integration model coupled optimal feature reconstruction with biphasic deep learning. Environmental Science and Pollution Research. 2021; 29(57): 85988-86004. doi: 10.1007/s11356-021-16089-2
Xu H, Wang M, Jiang S, et al. Carbon price forecasting with complex network and extreme learning machine. Physica A: Statistical Mechanics and its Applications. 2020; 545: 122830. doi: 10.1016/j.physa.2019.122830
Huang Y, He Z. Carbon price forecasting with optimization prediction method based on unstructured combination. Science of The Total Environment. 2020; 725: 138350. doi: 10.1016/j.scitotenv.2020.138350
Chai S, Zhang Z, Zhang Z. Carbon price prediction for China’s ets pilots using variational mode decomposition and optimized extreme learning machine. Annals of Operations Research. 2021; 1-22. doi: 10.1007/s10479-021-04392-7
Wei S, Chongchong Z, Cuiping S. Carbon pricing prediction based on wavelet transform and K-ELM optimized by bat optimization algorithm in China ETS: The case of Shanghai and Hubei carbon markets. Carbon Management. 2018; 9(6): 605-617. doi: 10.1080/17583004.2018.1522095
Lu H, Ma X, Huang K, et al. Carbon trading volume and price forecasting in China using multiple machine learning models. Journal of Cleaner Production. 2020; 249: 119386. doi: 10.1016/j.jclepro.2019.119386
Fan X, Li S, Tian L. Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model. Expert Systems with Applications. 2015; 42(8): 3945-3952. doi: 10.1016/j.eswa.2014.12.047
Sun W, Wang Y. Factor analysis and carbon price prediction based on empirical mode decomposition and least squares support vector machine optimized by improved particle swarm optimization. Carbon Management. 2020; 11(3): 315-329. doi: 10.1080/17583004.2020.1755597
Abdi A, Taghipour S. Forecasting carbon price in the Western Climate Initiative market using Bayesian networks. Carbon Management. 2019; 10(3): 255-268. doi: 10.1080/17583004.2019.1589842
Zhu B, Ye S, Wang P, et al. Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels. Journal of Forecasting. 2021; 41(1): 100-117. doi: 10.1002/for.2784
Zhu B, Han D, Wang P, et al. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. Applied Energy. 2017; 191: 521-530. doi: 10.1016/j.apenergy.2017.01.076
Liu H, Shen L. Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network. Carbon Management. 2019; 11(1): 25-37. doi: 10.1080/17583004.2019.1686930
Han M, Ding L, Zhao X, et al. Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors. Energy. 2019; 171: 69-76. doi: 10.1016/j.energy.2019.01.009
Zhou J, Huo X, Xu X, et al. Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm. Energies. 2019; 12(5): 950. doi: 10.3390/en12050950
Jaramillo-Morán MA, Fernández-Martínez D, García-García A, et al. Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study. Energies. 2021; 14(23): 7845. doi: 10.3390/en14237845
Chen J, Ma S, Wu Y. International carbon financial market prediction using particle swarm optimization and support vector machine. Journal of Ambient Intelligence and Humanized Computing. 2021; 13(12): 5699-5713. doi: 10.1007/s12652-021-03240-7
Jiang L, Wu P. International carbon market price forecasting using an integration model based on SVR. In: Proceedings of the 2015 International conference on Engineering Management, Engineering Education and Information Technology.
Ameyaw B, Yao L, Oppong A, et al. Investigating, forecasting and proposing emission mitigation pathways for CO2 emissions from fossil fuel combustion only: A case study of selected countries. Energy Policy. 2019; 130: 7-21. doi: 10.1016/j.enpol.2019.03.056
Hao Y, Tian C, Wu C. Modelling of carbon price in two real carbon trading markets. Journal of Cleaner Production. 2020; 244: 118556. doi: 10.1016/j.jclepro.2019.118556
Zhang W, Wu Z. Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine. Journal of Forecasting. 2021; 41(3): 615-632. doi: 10.1002/for.2831
Hong K, Jung H, Park M. Predicting European carbon emission price movements. Carbon Management. 2017; 8(1): 33-44. doi: 10.1080/17583004.2016.1275813
Zhou J, Yu X, Yuan X. Predicting the Carbon Price Sequence in the Shenzhen Emissions Exchange Using a Multiscale Ensemble Forecasting Model Based on Ensemble Empirical Mode Decomposition. Energies. 2018; 11(7): 1907. doi: 10.3390/en11071907
García A, Jaramillo-Morán MA. Short-term European union allowance price forecasting with artificial neural networks. Entrepreneurship and Sustainability Issues. 2020; 8: 261. doi: 10.9770/jesi.2020.8.1(18)
Li ZP, Yang L, Li SR, et al. The Long-Term Trend Analysis and Scenario Simulation of the Carbon Price Based on the Energy-Economic Regulation. International Journal of Climate Change Strategies and Management. 2020; 12(5): 653-668. doi: 10.1108/ijccsm-02-2020-0020
Atsalakis GS. Using computational intelligence to forecast carbon prices. Applied Soft Computing. 2016; 43: 107-116. doi: 10.1016/j.asoc.2016.02.029
Jin B, Xu X. Palladium Price Predictions via Machine Learning. Materials Circular Economy. 2024; 6(1). doi: 10.1007/s42824-024-00123-y
Xu X. Causal structure among US corn futures and regional cash prices in the time and frequency domain. Journal of Applied Statistics. 2018; 45(13): 2455-2480. doi: 10.1080/02664763.2017.1423044
Yang J, Su X, Kolari JW. Do Euro exchange rates follow a martingale? Some out-of-sample evidence. Journal of Banking & Finance. 2008; 32(5): 729-740. doi: 10.1016/j.jbankfin.2007.05.009
Xu X. Cointegration among regional corn cash prices. Economics Bulletin. 2015; 35: 2581-2594.
Yang J, Cabrera J, Wang T. Nonlinearity, data-snooping, and stock index ETF return predictability. European Journal of Operational Research. 2010; 200(2): 498-507. doi: 10.1016/j.ejor.2009.01.009
Xu X. Cointegration and price discovery in US corn cash and futures markets. Empirical Economics. 2017; 55(4): 1889-1923. doi: 10.1007/s00181-017-1322-6
Wang T, Yang J. Nonlinearity and intraday efficiency tests on energy futures markets. Energy Economics. 2010; 32(2): 496-503. doi: 10.1016/j.eneco.2009.08.001
Lu H, Ma X, Ma M, Zhu S. Energy price prediction using data-driven models: A decade review. Computer Science Review. 2021 Feb 1;39:100356. doi: 10.1016/j.cosrev.2020.100356
Karasu S, Altan A, Bekiros S, et al. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy. 2020; 212: 118750. doi: 10.1016/j.energy.2020.118750
Deb C, Zhang F, Yang J, Lee SE, Shah KW. A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews. 2017 Jul 1;74:902-24. doi: 10.1016/j.rser.2017.02.085
Wegener C, von Spreckelsen C, Basse T, et al. Forecasting Government Bond Yields with Neural Networks Considering Cointegration. Journal of Forecasting. 2015; 35(1): 86-92. doi: 10.1002/for.2385
Xu X, Zhang Y. A Gaussian process regression machine learning model for forecasting retail property prices with Bayesian optimizations and cross-validation. Decision Analytics Journal. 2023; 8: 100267. doi: 10.1016/j.dajour.2023.100267
Jin B, Xu X. Predictions of steel price indices through machine learning for the regional northeast Chinese market. Neural Computing and Applications. 2024.
Xu X, Zhang Y. Residential housing price index forecasting via neural networks. Neural Computing and Applications. 2022; 34(17): 14763-14776. doi: 10.1007/s00521-022-07309-y
Xu X, Zhang Y. Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. Intelligent Systems in Accounting, Finance and Management. 2022; 29(3): 169-181. doi: 10.1002/isaf.1519
Herrera GP, Constantino M, Tabak BM, Pistori H, Su JJ, Naranpanawa A. Long-term forecast of energy commodities price using machine learning. Energy. 2019 Jul 15;179:214-21. doi: 10.1016/j.energy.2019.04.077
Yousaf A, Asif RM, Shakir M, Rehman AU, Alassery F, Hamam H, Cheikhrouhou O. A novel machine learning-based price forecasting for energy management systems. Sustainability. 2021 Nov 16;13(22):12693. doi: 10.3390/su132212693
Karasu S, Altan A, Sarac Z, et al. Prediction of wind speed with non-linear autoregressive (NAR) neural networks. In: Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU).
Ghoddusi H, Creamer GG, Rafizadeh N. Machine learning in energy economics and finance: A review. Energy Economics. 2019 Jun 1;81:709-27. doi: 10.1016/j.eneco.2019.05.006
Karasu S, Altan A, Saraç Z, Hacioğlu R. Estimation of fast varied wind speed based on narx neural network by using curve fitting. International Journal of Energy Applications and Technologies. 2017; 4: 137-146.
Xu X, Zhang Y. Regional steel price index forecasts with neural networks: evidence from east, south, north, central south, northeast, southwest, and northwest China. The Journal of Supercomputing. 2023; 79(12): 13601-13619. doi: 10.1007/s11227-023-05207-1
Lucas A, Pegios K, Kotsakis E, Clarke D. Price forecasting for the balancing energy market using machine-learning regression. Energies. 2020 Oct 16;13(20):5420. doi: 10.3390/en13205420
Altan A, Karasu S, Zio E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing. 2021; 100: 106996. doi: 10.1016/j.asoc.2020.106996
Mosavi A, Salimi M, Faizollahzadeh Ardabili S, Rabczuk T, Shamshirband S, Varkonyi-Koczy AR. State of the art of machine learning models in energy systems, a systematic review. Energies. 2019 Apr 4;12(7):1301. doi: 10.3390/en12071301
Alshater MM, Kampouris I, Marashdeh H, Atayah OF, Banna H. Early warning system to predict energy prices: the role of artificial intelligence and machine learning. Annals of Operations Research. 2022 Aug 26:1-37. doi: 10.1007/s10479-022-04908-9
Olubusoye OE, Akintande OJ, Yaya OS, Ogbonna AE, Adenikinju AF. Energy pricing during the COVID-19 pandemic: Predictive information-based uncertainty indexes with machine learning algorithm. Intelligent Systems with Applications. 2021 Nov 1;12:200050. doi: 10.1016/j.iswa.2021.200050
Xu X, Zhang Y. Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products. Mineral Economics. 2022; 36(4): 563-582. doi: 10.1007/s13563-022-00357-9
Castelli M, Groznik A, Popovič A. Forecasting electricity prices: A machine learning approach. algorithms. 2020 May 8;13(5):119. doi: 10.3390/a13050119
An J, Mikhaylov A, Moiseev N. Oil price predictors: Machine learning approach. International Journal of Energy Economics and Policy. 2019 Jul 23;9(5):1-6.
Tschora L, Pierre E, Plantevit M, Robardet C. Electricity price forecasting on the day-ahead market using machine learning. Applied Energy. 2022 May 1;313:118752. doi: 10.1016/j.apenergy.2022.118752
Xu X, Zhang Y. Individual time series and composite forecasting of the Chinese stock index. Machine Learning with Applications. 2021; 5: 100035. doi: 10.1016/j.mlwa.2021.100035
Chaudhury P, Tyagi A, Shanmugam PK. Comparison of various machine learning algorithms for predicting energy price in open electricity market. In2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE) 2020 Oct 20 (pp. 1-7). IEEE. doi: 10.1109/ICUE49301.2020.9307100
Yang K, Zhang X, Luo H, Hou X, Lin Y, Wu J, Yu L. Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting. Energy. 2024 Jul 1;298:131321. doi: 10.1016/j.energy.2024.131321
Levenberg K. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics. 1944; 2(2): 164-168. doi: 10.1090/qam/10666
Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics. 1963; 11(2): 431-441. doi: 10.1137/0111030
Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 1993; 6: 525-533. doi: 10.1016/S0893-6080(05)80056-5
Sadorsky P. Using machine learning to predict clean energy stock prices: How important are market volatility and economic policy uncertainty?. Journal of Climate Finance. 2022 Dec 1;1:100002. doi: 10.1016/j.jclimf.2022.100002
Yang W, Sun S, Hao Y, Wang S. A novel machine learning-based electricity price forecasting model based on optimal model selection strategy. Energy. 2022 Jan 1;238:121989. doi: 10.1016/j.energy.2021.121989
Doan CD, Liong S. Generalization for multilayer neural network Bayesian regularization or early stopping. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources 2nd Conference.
Jabeur SB, Khalfaoui R, Arfi WB. The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning. Journal of Environmental Management. 2021 Nov 15;298:113511. doi: 10.1016/j.jenvman.2021.113511
Su M, Zhang Z, Zhu Y, Zha D, Wen W. Data driven natural gas spot price prediction models using machine learning methods. Energies. 2019 May 3;12(9):1680. doi: 10.3390/en12091680
Kayri M. Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data. Mathematical and Computational Applications. 2016; 21(2): 20. doi: 10.3390/mca21020020
Costa AB, Ferreira PC, Gaglianone WP, Guillén OT, Issler JV, Lin Y. Machine learning and oil price point and density forecasting. Energy Economics. 2021 Oct 1;102:105494. doi: 10.1016/j.eneco.2021.105494
Díaz G, Coto J, Gómez-Aleixandre J. Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression. Applied Energy. 2019 Apr 1;239:610-25. doi: 10.1016/j.apenergy.2019.01.213
Khan TA, Alam M, Shahid Z, Mazliham M. Comparative performance analysis of Levenberg Marquardt, Bayesian regularization and scaled conjugate gradient for the prediction of flash floods. Journal of Information Communication Technologies and Robotic Applications. 2019; 52-58.
Antonopoulos I, Robu V, Couraud B, Kirli D, Norbu S, Kiprakis A, Flynn D, Elizondo-Gonzalez S, Wattam S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews. 2020 Sep 1;130:109899. doi: 10.1016/j.rser.2020.109899
Sai W, Pan Z, Liu S, Jiao Z, Zhong Z, Miao B, Chan SH. Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms. Applied Energy. 2023 Dec 15;352:121989. doi: 10.1016/j.apenergy.2023.121989
Selvamuthu D, Kumar V, Mishra A. Indian stock market prediction using artificial neural networks on tick data. Financial Innovation. 2019; 5(1). doi: 10.1186/s40854-019-0131-7
Guo L, Huang X, Li Y, Li H. Forecasting crude oil futures price using machine learning methods: Evidence from China. Energy Economics. 2023 Nov 1;127:107089. doi: 10.1016/j.eneco.2023.107089
Nadirgil O. Carbon price prediction using multiple hybrid machine learning models optimized by genetic algorithm. Journal of Environmental Management. 2023 Sep 15;342:118061. doi: 10.1016/j.jenvman.2023.118061
Baghirli O. Comparison of lavenberg-marquardt, scaled conjugate gradient and Bayesian regularization backpropagation algorithms for multistep ahead wind speed forecasting using multilayer perceptron feedforward neural network. Uppsala University; 2015.
Lu H, Ma X, Huang K, Azimi M. Carbon trading volume and price forecasting in China using multiple machine learning models. Journal of Cleaner Production. 2020 Mar 10;249:119386. doi: 10.1016/j.jclepro.2019.119386
He H, Sun M, Li X, Mensah IA. A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features. Energy. 2022 Apr 1;244:122706. doi: 10.1016/j.energy.2021.122706
Bataineh AA, Kaur D. A Comparative Study of Different Curve Fitting Algorithms in Artificial Neural Network using Housing Dataset. In: Proceedings of the NAECON 2018-IEEE National Aerospace and Electronics Conference.
Guo P, Lam JC, Li VO. Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach. Applied Energy. 2019 Feb 1;235:900-13. doi: 10.1016/j.apenergy.2018.11.014
Guliyev H, Mustafayev E. Predicting the changes in the WTI crude oil price dynamics using machine learning models. Resources Policy. 2022 Aug 1;77:102664. doi: 10.1016/j.resourpol.2022.102664
Izanloo M, Aslani A, Zahedi R. Development of a Machine learning assessment method for renewable energy investment decision making. Applied Energy. 2022 Dec 1;327:120096. doi: 10.1016/j.apenergy.2022.120096
Tang L, Wu Y, Yu L. A randomized-algorithm-based decomposition-ensemble learning methodology for energy price forecasting. Energy. 2018 Aug 15;157:526-38. doi: 10.1016/j.energy.2018.05.146
Kapoor G, Wichitaksorn N. Electricity price forecasting in New Zealand: A comparative analysis of statistical and machine learning models with feature selection. Applied Energy. 2023 Oct 1;347:121446. doi: 10.1016/j.apenergy.2023.121446
Kano Y, Shimizu S. Causal inference using nonnormality. In: Proceedings of the international symposium on science of modeling, the 30th anniversary of the information criterion.
Shimizu S, Hoyer PO, Hyvärinen A, et al. A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research. 2006; 7.
Luo S, Weng Y. A two-stage supervised learning approach for electricity price forecasting by leveraging different data sources. Applied energy. 2019 May 15;242:1497-512. doi: 10.1016/j.apenergy.2019.03.129
Shimizu S, Kano Y. Use of non-normality in structural equation modeling: Application to direction of causation. Journal of Statistical Planning and Inference. 2008; 138(11): 3483-3491. doi: 10.1016/j.jspi.2006.01.017
Shimizu S, Inazumi T, Sogawa Y, et al. A direct method for learning a linear non-gaussian structural equation model. The Journal of Machine Learning Research. 2011; 12: 1225-1248.
Bessler DA, Wang Z. D-separation, forecasting, and economic science: a conjecture. Theory and Decision. 2012; 73(2): 295-314. doi: 10.1007/s11238-012-9305-8
Jin B, Xu X. Forecasts of thermal coal prices through Gaussian process regressions. Ironmaking & Steelmaking. 2024. doi: 10.1177/03019233241265194
Jin B, Xu X. Regional steel price index predictions for north China through machine learning. International Journal of Mining and Mineral Engineering. 2024.
Jin B, Xu X. Gaussian process regression based silver price forecasts. Journal of Uncertain Systems. 2024. doi: 10.1142/s1752890924500132
Copyright (c) 2024 Bingzi Jin, Xiaojie Xu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution-Noncommercial 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit, that the work is not used for commercial purposes, and that in the event of reuse or distribution, the terms of this license are made clear. With this license, the authors hold the copyright without restrictions and are allowed to retain publishing rights without restrictions as long as this journal is the original publisher of the articles.