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ABSTRACT 
In this paper, aerodynamics coefficients of Boeing 737-300 were calculated using VLM (vortex lattice method) theory. 

The wing was assumed to be planar and was divided into 6×6 panels, which were in the trapezoid shape. Aerodynamics 
lifting and moment coefficients were calculated. Also, center of pressure location was found using data from VLM and 
wing geometry. Comparisons between literature, finite wing theory and VLM theory were done. It was found that 
maximum lifting coefficient error between literature and VLM was about 4.0%. Moreover, that between finite wing theory 
and VLM was about 2.2%. Center of pressure location error between finite wing theory and VLM was about 0.5%. 
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1. Introduction 
VLM (vortex lattice method) is a numerical method which aims to solve flow around wing bodies. The method is 

based on lifting line theory proposed by Prandtl[1] and is considered to be an extension of that method. However, compared 
with the lifting line theory which assumes one horseshoe vortex per wing, VLM theory utilizes a lattice of horseshoe 
vortices, as described by Falkner[2]. The number of vortices used varies with the required pressure distribution resolution, 
and with required accuracy in the computed aerodynamic coefficients. Detailed description of VLM theory in the context 
of aerodynamics is displayed by Katz & Plotkin[3], Bertin & Smith[4] and others[5,10-12]. 

The vortex lattice method is based on ideal flow theory (known as Potential flow) which is supposed to model real 
flow; however, this simplified model representation is good enough for most engineering applications. VLM theory 
neglects all viscous effects. Likewise, turbulence, dissipation and boundary layer effects are not considered at all. 
Nevertheless, induced drag can be estimated together with or without special cases of stall phenomena. 

In this current study, VLM theory is applied to Boeing 737-300 wings with comparisons to finite-wing theory and 
relevant literature. 

2. VLM Model 
Boeing 737-300 aircraft wing geometry is illustrated in Figure 1. 
While technical data of the airplane has been obtained using Boeing Commercial Airplanes[6]. In order to use VLM 

theory properly wing extension was done as shown in Figure 2. VLM model assumptions are as follows: 
•  The flow field is incompressible, inviscid and irrotational. 
•  Lifting surfaces are thin. 
•  The angle of attack and the angle of sideslip are both small. 
•  Planar wing. 
•  Symmetrical wing shape around x-z axis, so it can be assumed that: 
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• Symmetrical wing shape around x-z axis, so it can be assumed that: 
• Panel shape is trapezoid. 
• Trail vortexes are released in the wing plan, velocity direction or in the intermediate state since trail angle 
influence can be neglected. 
 

Moreover, due to symmetry assumption all calculations were made on the right-wing side. In other words, total 
numbers of equations are for N/2 collocation points. However, B.C. was calculated with both wing side vortexes. In more 
detailed describe, the wing was divided into two main trapezoids such as each trapeze was divided into six parts in x 
direction and three parts in y direction, as shown in Figure 2. Now, VLM algorithm will be elaborated as follows: 
• The Wing was divided into 6×6 panels. 
• Horseshoe vortexes were placed as shown in Fig. 2 inside each panel according the following order: 
- Coupled vortexes were placed at 1/4 panel chord point in y-axis direction such as symmetry profile fulfills 
that 𝐶𝐶𝑚𝑚|𝐶𝐶/4 = 0 

- Traced vortexes were placed at the panels’ boundaries. 

- Half infinity vortexes were placed in x-axis direction. 
- Collocation points were placed at 3/4 panel chord in the middle of the chord. 
• Induced velocity on each collocation point in case of planar wing will be given according to Biot-Savart law[5] 

by the following equation which brought by Spurk and Aksel[7]: 
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While ( x1n , y1n ),( x2n , y2n ),( xm , ym ) represent A (initial point of the left half infinity vortex), B (initial point of the 

right half infinity vortex), C coordinates, respectively. 

• In order to fulfill edge conditions, which means that normal velocity at the boundaries is zero, Neumann B.C. is 
applied such as: 

while α,δ ,φ are attack angle, deflection angle and dihedral local angles, respectively. Also, un , wn , vn are the induced 
velocities in the normal directions, respectively. WhereU ∞ is the free stream speed. 

In our case of planar wing with no dihedral angle, where δ = φ = 0 , set of N equations is obtained, by the form: 
 

• Aerodynamics coefficients for planar wing are calculated as follows: 
- Lifting coefficient per unit span function is of the form: 

while c(y) is the chord function location. 
- Total lifting coefficient function is of the form: 
 

while ∆yj is local surface cell width. Sw is the wing area including the unexposed area. 
 

- Pitch moment coefficient per unit span around wing vertex is calculated by: 
 
 

 
while xo, j is the distance between apex and vortex center. 
 
- Total pitch moment coefficient around wing vertex is calculated by: 

Where the reference chord is the aerodynamic average chord and calculated by: 

 
 
While b is the total chord length. 
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• Center of pressure location is calculated using previous aerodynamic coefficients: 
 

 
While calculation was done according to Figure 3 around the theoretical point - wing apex (0,0). 

In favor of completing this section, main geometrical parameters will be calculated using Boeing data sheet[6]. After 
measuring length chord, calculating wing trapezoid surface area and averaged aerodynamic chord together with rearward 
sweep angle, we got the following geometrical parameters: 

 
 
while the total rearward sweep angle is dependent on y coordinate only. As a result, the angle calculation was based on 
simple triangle calculation. From here, Finite wing theory will be brought about by the current context. 
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3. Finite wing theory 
In the first step, finite-wing theory which are based on lifting line theory will be presented: 

• Finite span. 
• Vortices are being produced at the wing tips of the finite wing, which trail downstream. 
• Downwash velocity. 

• Mach number fulfills: 0 ≤ M ≤ 0.7 . 
• Aspect ratio should fulfill AR > 4 . 

However, lift-curve slope in case of swept wing is given by Kuchemann[8]: 

While e is the taper ratio (also known as Oswald efficiency factor). Here, nominal Oswald efficiency (e is equal to 0.95 

and Mach number (M) is equal to zero since we deal with in compressible flow. Additionally, taper ratio was calculated 
using Figure 4 as follows: 

Figure 4. Swept wing geometry. 

 

Where taper ratio is defined by: 
 

Next section, final results and comparison to finite-wing theory and literature will be presented and discussed. 

4. Results & Discussion 
Comparisons between VLM specific aerodynamics parameters, Finite-Wing theory and literature as appeared in 

Kuethe and Chow[9] are presented in Table 1. 
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Figure 5. Lifting coefficient Vs. angle of attack using Boeing 737 wing data as given by Kuethe & Chow[9]. 

Slope lifting line calculation as brought by Kuethe & Chow[9] and shown in Figure 5, is calculated by: 
 
 

 
 

 
Table 1. Aerodynamics parameter comparisons between VLM theory, Finite-Wing theory and literature (Kuethe and Chow, 1998). 

 
Examination of table 4 leads to conclusion that VLM obtained results are coincided with finite-wing theory and 

literature. Likewise, lift slope error between VLM theory and finite wing theory is about 4%. Also, the error between VLM 
theory and literature is about 2%. Moreover, center of pressure location error between VLM theory and finite wing theory 
may also be neglected (about 0.5 %). 
 

5. Conclusion 
Boeing 737-300 finite wing aerodynamic coefficients were calculated using VLM theory compared to finite wing 

theory and literature. The wing was divided into N panels of the size: 6X6. The wing was assumed to be planar and the 
panels are in the trapezoid shape. 
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VLM theory is coincided with finite-wing theory and literature. Likewise, lift slope error between VLM theory and 
finite wing theory is about 4%. Also, the error between VLM theory and literature is about 2%. Moreover, center of 
pressure location error between VLM theory and finite wing theory may also be neglected (about 0.5 %). 
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