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Abstract: Because rolling bearings have been working in an environment with complex and variable working conditions 
and large noise interference for a long time, the bearing fault diagnosis method has a poor diagnostic effect under varia-
ble working conditions. To solve this problem, we propose a residual neural network based on the diagnosis method of 
rolling bearing fault. The proposed method takes rolling bearing time-domain signal data as input. Because bearing sig-
nals have strong time-varying properties, we construct a multi-scale residual block that can not only learn features at 
different levels, but also expand the width and depth of the residual neural network. We use the advantages of the dilat-
ed convolution to expand the receptive field, replace part of the ordinary convolution in the multi-scale residual block 
with the dilated convolution, and design a multi-scale hollow residual block. The advantage is that the method is 
made by expanding the receptive field. It has a strong feature learning ability and can learn better features under limited 
data. Finally, we add a Dropout layer to discard a certain proportion of neurons after the fully connected layer, which 
can effectively avoid the negative impact of overfitting, and use Case Western Reserve University bearing dataset, the 
simulation experiment, and the SVM + EMD + Hilbert envelope spectrum, BPNN + EMD + Hilbert envelope spectrum 
and Resnet three ways of comparative analysis, the results show that the method under the variable condition of the 
fault diagnosis of rolling bearing has higher diagnosis accuracy, stronger noise resistance, and generalization ability. 
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1. Introduction 
As the core part of rotating machinery, rolling bear-

ing plays a role in supporting the rotating body and re-
ducing friction coefficient during the working process[1]. 
As the working conditions of rolling bearings are com-
plex and changeable, various faults may occur, which 
may lead to accidents and huge property losses[2]. There-
fore, it is very important to diagnose the faults of roll-
ing bearings. In the actual work of rolling bearing, under 
the action of different loads and under the influence of 
different noises, the failure of rolling bearing will have a 
great impact on the performance, stability, and life of 

rotating machinery. Therefore, the fault diagnosis of 
rolling bearing under off-duty working conditions has 
attracted extensive attention of scholars[3]. In order to 
maintain good bearing performance under different 
working conditions, the rolling bearing fault diagnosis 
method needs to have a good generalization and an-
ti-noise performance under different load and noise con-
ditions. An effective fault diagnosis method can not only 
obtain the healthy state of the bearing under 
off-operating conditions, but also detect the fault type, 
which is also the most challenging task in rolling bearing  
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fault diagnosis[4]. 
At present, the main methods of rolling bearing 

fault diagnosis include signal processing method and 
intelligent diagnosis method, but the signal processing 
method requires a lot of professional domain knowledge 
and prior knowledge, which limits its application. Intel-
ligent diagnosis is a new development of mechanical 
fault detection technology, in which feature-based engi-
neering method and artificial neural network 
(ANN) based method are two commonly used intelligent 
diagnosis methods[5]. The former method mainly realizes 
fault diagnosis through feature extraction and feature 
pattern classification. For example, Wang et al.[6] com-
bined the advantages of local mean decomposition and 
fast peak value to deal with fault characteristics and de-
tected the fault of rotating machinery. MAO et al.[7] used 
the support vector machine (SVM) as a feature pattern 
classification algorithm and combined with multi-scale 
permutation entropy to diagnose the health status 
of bearings, and achieved a good classification effect. 
However, the method based on the feature equation still 
needs to extract feature vectors manually, which has 
some problems such as strong professional dependence 
and difficulty in feature extraction, which limits the de-
velopment of this method in the field of fault diagnosis. 
With the rise of deep learning, bearing fault diagnosis 
methods based on artificial neural network (ANN) 
have been developing rapidly[8]. For example, Zhang et 
al.[9] used Fast Fourier Transform (FFT) to transform the 
original signal as input and achieved good results 
through a deep convolutional neural network (DCNN) 
with a wide convolution kernel as the first layer. Chen et 
al.[10] combined support vector machines and convolu-
tional neural networks to effectively diagnose bearing 
faults. Jing et al.[11] used a convolutional neural network 
to learn the characteristics of the time-frequency data of 
the original data and proved that using a convolutional 
neural network for feature learning can provide better 
results than manual feature extraction. Zhang et al.[12] 
designed a large number of simulation experiments 
for bearing fault diagnosis, and the results showed that 
the generalization ability of deep learning method 
was better than that of the traditional feature extraction 
fault diagnosis method[13]. 

Although deep learning has great potential to avoid 
false features caused by environmental noise and fluctu-

ations in working conditions, it still requires clever 
structural design to avoid incorrect features of bearing 
vibration signals. Therefore, this paper proposes a fault 
diagnosis method based on residual neural network. The 
method expands the receptive field by improving the 
multiscale residual block and adding cavity convolution 
into the residual neural network, so as to improve the 
characteristic learning ability of the method. Finally, the 
Dropout layer is added after the full connection layer, 
which can effectively avoid the overfitting problem 
caused by the small amount of effective data in the fault 
diagnosis of deep neural network, and achieve a better 
diagnosis effect of rolling bearing. 

2. Residual neural network 
In 2016, He et al.[14] designed a Residual neural 

network (Resnet) on the basis of a convolutional neural 
network, which effectively solved the problem of the 
disappearance of the gradient of the deep convolutional 
neural network, and shined in the ImageNet image 
recognition competition. The neural network introduces 
the concept of residual learning, which learns residual 
features through multiple residual blocks connected end 
to end. The residual block structure is shown in Figure 1, 
where x  is the input of the residual neural network, 

( )H x  is the output, ( )F x  is the residual mapping 
function, ( ) ( ,{ })iH x F x W x= +  is the identity map-
ping function, and Conv is the convolutional layer. The 
residual neural network adds cross-layers on the basis of 
ordinary deep convolutional networks, fits the training 
residuals, and only learns the difference between output 
and input. He proved by experiment and fitting residual 
error mapping function than to fitting ( ) ( )F x H x x= −  
identity mapping function ( )H x x=  more easily, and 
in the process of training the underlying error can be 
quickly connected to the top layer, in addition to using 
the objective function in the process of making training 
gradient, also increased the residual gradient, so the re-
sidual neural network is While having a deeper number 
of layers, it also has a stronger feature learning ability. 
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Figure 1. Residual block structure 

3. Fault diagnosis method of roll-
ing bearing based on residual neu-
ral network 
3.1 Multi-scale residual block 

Because traditional residual neural network internal 
residual block contains only one size of convolution 
kernels, the extracted features are unitary, and often ac-
companied by changes in load bearing in the operation 
process, lead to bearing were collected one-dimensional 
time domain signal has a certain difference, so in order 
to be kept in the time domain signal extraction to the 
more abundant characteristic information, this paper 
constructed a multi-scale residual block, its structure is 
shown in figure 2.  
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Figure 2. Multi-scale residual block 

 
In Figure 2, the multi-scale residual block improves 

the first convolutional layer of the traditional residu-
al block. In this layer, two convolution modules of dif-
ferent sizes are used. The size of the convolution kernel 
is 3×3 and 5×5. Among them, the 3×3 convolution mod-

ule focuses on extracting local features, and the 5×5 
convolution module focuses on extracting global features, 
so that the multi-scale residual block can more effective-
ly extract the feature information in the time domain 
signal, and in each volume Batch Normalization (BN) 
and Relu activation function are used in the product 
modules to accelerate the feature extraction rate of the 
network. Finally, the two modules are spliced together in 
the feature dimension through the concat layer and 
transported to the next convolution layer. We consider 
that densely connected convolutional layers will increase 
the amount of parameter calculations and reduce the 
learning efficiency of the residual neural network, so 
only use the multi-scale convolution module in the first 
layer of the residual block. The second layer of the re-
sidual block still uses a convolutional layer with a con-
volution kernel size of 3×3. 

3.2 Multi-scale cavity residual block 

Because of the difference in bearing signal charac-
teristics under different working conditions, it is difficult 
to accurately identify the bearing signal characteristic 
information with the residual neural network construct-
ed by the traditional residual block. To solve this prob-
lem, a multi-scale residual cavity block including dilated 
convolution is designed in this paper. The concept of 
cavity convolution was proposed by Yu et al.[15] in 2016. 
Its principle is to introduce a cavity coefficient with an 
expansion rate d  in the ordinary convolution kernel to 
obtain a new cavity convolution kernel. The width of the 
cavity convolution kernel is ( 1)( 1)w w d+ − − . The 
height is ( 1)( 1)h h d+ − − , where w  is the width of 
the ordinary convolution kernel, and h  is the height of 
the ordinary convolution kernel. The convolution opera-
tion of the dilated convolution is the same as the ordinary 
convolution, but the dilated convolution has a larger re-
ceptive field and has the same parameter calculation 
amount as the latter during the network training process. 
In order to improve the feature learning ability of the 
method presented in this paper, the ordinary convolution 
kernel in the multi-scale residual block is replaced by the 
dilated convolution kernel with an expansion rate of 2 to 
construct the dilated residual block. In this way, the or-
dinary convolution kernel has the receptive field of the 
dilated convolution kernel and has stronger feature 
learning ability. The structure of multi-scale cavity re-
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sidual block is shown in Figure 3. 
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Figure 3. Multi-scale cavity residual block 

 

3.3 Residual neural network method struc-
ture 

Aiming at the problem of poor fault diagnosis effect 
caused by the complex working environment of roll-
ing bearings and insufficient effective data samples. We 
improve the traditional residual neural network. The im-
proved network is mainly composed of 4 residual blocks 
connected end to end. The structure of this method is 
shown in Figure 4. 
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Figure 4. Residual neural network method structure 

 
In Figure 4, this method first converts the input 

signal of the rolling bearing into a two-dimensional 
grayscale image, and then extracts the characteristic in-
formation of the signal through the maximum pooling 

layer, and then uses 4 residual blocks. In this paper, the 
first residual Block and the third residual block are set as 
multi-scale residual blocks, the second residual block 
and the fourth residual block are set as multi-scale dilat-
ed residual blocks, thereby improving the feature infor-
mation learning ability of the method, and After each 
convolutional layer, batch normalization (BN) is added, 
which improves the generalization ability of the method 
while increasing the network learning rate. Finally, the 
extracted data passes through the fully connected layer. 
The proposed method adds the Dropout layer after the 
fully connected layer. Dropout is an effective method to 
alleviate overfitting. During the training process, Drop-
out will be randomly selected in each training batch. A 
certain percentage of neurons are discarded, so that the 
residual neural network only forwards and reverses the 
parameters of the retained neurons, so as to achieve the 
effect of regularization and effectively suppress the neg-
ative impact of overfitting. Suppose the discard probabil-
ity of any neuron is p , 
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Among them, ap  is the probability of sample a  

generating 1, and aB  is the number of samples a  in 
the i th neuron. In this way, the interaction between 
neurons and the dependence on some local features 
can be weakened, so that the method will not be inter-
fered with by overfitting in the fault diagnosis of variable 
working conditions, and finally output the diagnosis re-
sults through the Softmax classifier. 

4. Simulation experiment and result 
analysis 
4.1 Experimental data and parameter set-
tings 

The experimental data uses the rolling bearing data 
set published by the Bearing Research Institute of Case 
Western Reserve University. This data set is an interna-
tionally recognized standard data set used to verify bear-
ing failure methods and is used by many scholars. 
Therefore, using this data set for simulation experiments 
is also more important and it is very convincing. The 
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rolling bearing test bench is shown in Figure 5. 
 

 
Figure 5. Rolling bearing test bench 

 
In Figure 5, the test bench is composed of a motor, 

an encoder, and a dynamometer, and the test bearing is 
an SKF6205 motor bearing. The experimental data is 
collected from the acceleration sensor on the motor drive 
end and the fan end. There are 4 types of motor speeds, 
namely 1797, 1772, 1750, and 1730 r/min, corresponding 

to load data of 0, 1, 2, and 3hp. The bearing failure posi-
tions are at 3 o’clock in the rolling element, inner ring, 
outer ring, 6 o’clock in the outer ring, and 12 o’clock in 
the outer ring. The number of sampling channels of the 
experimental data is 16, and the sampling frequency is 
12 kHz. According to the location of the bearing failure 
and the degree of damage, the collected data is divided 
into 16 status tags. We set the number of sampling points 
for each sample to 784, the number of samples in each 
state label is roughly the same, and the collected data is 
divided into training samples and test samples at a ratio 
of 3:1. The test samples under different loads are selected 
as the variable load test samples, and the variable noise 
test samples are obtained by loading the Gaussian white 
noise method with different Signal to Noise Ratio (SNR) 
on the test samples. The specific experimental data inte-
gration table is shown in Table 1. 

Table 1 Data integration points 

Load 
Number of training 

samples 
Different load 

Number of test samples 

Variable load Variable noise 

0hp 1972 
1hp 
2hp 

3hp 

740 
740 

740 

663 

1hp 2200 

0hp 

2hp 
3hp 

663 

740 
740 

740 

2hp 2200 
0hp 
1hp 

3hp 

663 
740 

740 

740 

3hp 2205 

0hp 

1hp 

2hp 

663 

740 

740 

740 

 
The simulation experiment platform is TensorFlow, 

using Python3.7 programming, the computer processor is 
i5-4200H, the graphics card is NVIDIA GTX860, and 
the system is Windows10. The experiment uses a 
small batch training method, set the batch size to 64, the 
number of iteration batches is 2200, the initial value of 
the dynamic learning rate is set to 0.001, and the attenua-
tion rate is set to attenuate 0.9 times per 1000 times. In 

the training process, the Adam gradient optimization  
 
algorithm is used to update the network parameters, and 
the dropout is set to a 50% training discard ratio. Drop-
out is not used in the test process, that is, all neurons are 
involved in the calculation. In order to prevent the con-
tingency of the experimental results, the average value of 
10 experimental results is selected as the final result. 

We select the SVM-EMD envelope spectrum, 
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BPNN-EMD envelope spectrum method, and Resnet 
method for comparison experiments. The input of the 
first two methods is the envelope spectrum of the first 
five eigenmode functions after EMD decomposition, the 
structure of BPNN is set to 3920-300-16, and the SVM 
multi-classification method is “one-to-many”, and select 
“Gaussian kernel function” as its kernel function. The 
network structure of the Resnet method consists of a data 
pooling layer, a fully connected layer, and five residu-
al blocks connected end to end. The residual blocks all 
use a 3×3 convolution kernel. 

4.2 Experimental results and analysis 

4.2.1 Diagnosis results of variable noise 
faults 

Because the noise generated by the vibration and 

mutual friction of the rolling bearing is inevitable during 
the working process of the rolling bearing, the fault in-
formation is difficult to identify, so the rolling bearing 
fault diagnosis method must have good noise resistance. 
In order to show that the method in this paper has better 
advantages in the complex noise environment, it will be 
compared and analyzed with the three selected fault di-
agnosis methods. Taking the fault diagnosis of roll-
ing bearing under a load of 2hp and 1750r/min as exam-
ples, the signal noise is added to the source test samples. 
The ratio is 6dB, 9dB, and 12dB Gaussian white noise, 
and then three variable noise test samples are used to 
detect the fault diagnosis accuracy of each method. The 
results are shown in Table 2. 

 

Table 2 Accuracy of variable noise fault diagnosis 

Different fault diagnosis methods 
Accuracy（%）  

Average accuracy（%） 
6 dB 9 dB 12 dB 

SVM-EMD 82.86 84.67 83.80 83.77 
BPNN-EMD 76.50 76.58 79.30 77.46 

Resnet 92.56 96.31 97.85 95.57 

Proposed method 95.51 97.70 98.61 97.27 

 
It can be seen from Table 2 that the fault diagnosis 

accuracy of the SVM-EMD and BPNN-EMD methods is 
significantly lower than that of the Resnet method and 
the proposed method. Although the average fault diagno-
sis accuracy of the Resnet method is also higher, when 
the signal-to-noise ratio decreases, the accuracy will de-
crease. The variable noise fault diagnosis results of the 
proposed method have higher fault diagnosis accuracy 
than the other three methods under different SNR, all of 
which remain above 95%, it can be seen that the method 
proposed in this paper has better anti-noise ability under 
the condition of variable noise. 
4.2.2 Fault diagnosis results of variable load 

When the rolling bearing is working, the load con-
dition will also change, so the generalization ability is 
often used to measure the variable load diagnosis per-
formance of the rolling bearing diagnosis method. 
Therefore, this paper conducts experiments on the per-
formance of different methods under variable load condi-
tions. The results are shown in Figure 6. Figure 6 shows 
the fault diagnosis accuracy of the four methods under 

different load changes. The load change refers to the se-
lection of 0hp～3hp load. One of the load data is used as 
the training set, and the other load data is selected as the 
test set. 

We take the three sets of experimental results of 0-1, 
0-2, and 0-3 as examples for analysis. It can be seen from 
Figure 6 that the diagnostic accuracy of the two methods, 
SVM-EMD and BPNN-EMD, are both at below 75%, 
Resnet’s method can achieve a diagnostic accuracy of up 
to 92%, while the three groups of experimental diagnosis 
accuracy based on this method are all above 90%. In 
contrast, the fault diagnosis accuracy of this method is 
significantly higher than the previous three methods. In 
addition, the diagnostic accuracy based on the three 
methods of SVM-EMD, BPNN-EMD, and Resnet is 
significantly improved in the two load changes experi-
ments of 2-1 and 2-3. The reason is that the accuracy of 
the fault diagnosis is from 2hp. When the load changes to 
1hp and 3hp, the data representation is relatively similar, 
so the fault diagnosis accuracy has been improved, but it 
is still lower than the fault diagnosis accuracy based on 
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this method. In summary, the method in this paper 
can better adapt to the difference of rolling bearing vi-
bration signals under variable load and has better gener-
alization ability. 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 6. Fault diagnosis results of variable load 

 

5. Conclusion 

Aiming at the difficulty of extracting fault features 
in the time domain signal of rolling bearings and the low 
accuracy of fault diagnosis, this paper proposes a fault 
diagnosis method based on residual neural network. The 
input of this method uses the time-domain vibration sig-
nal of rolling bearings. The improved data pooling layer 
enhances the ability to extract data features, and the de-
signed hollow residual block is added to the residual 
neural network to improve the efficiency of feature 
learning. After the fully connected layer enters the 
Dropout layer to avoid the impact of overfitting and fi-
nally output the diagnosis result through the classifier. 
By comparing with the three methods of SVM-EMD 
envelope spectrum, BPNN-EMD envelope spectrum, and 
Resnet, the results show that the residual neural network 
method proposed in this paper has better anti-noise per-
formance in the experiment of variable noise, can better 
adapt to the change of load in the experiment of variable 
load, and has higher generalization ability. Finally, the 
fault diagnosis accuracy is still higher in the experiment 
of variable noise and variable load. 
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