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Interest Rate Model with Humped Volatility under the Real-World Measure
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Graduate School of Engineering Management, Shibaura Institute of Technology
Abstract: The purpose of this paper is to develop real-world modeling for interest rate volatility with a humped term structure. We consider humped volatility that can be parametrically characterized such that the Hull–White model is a special case. First, we analytically show estimation of the market price of risk with humped volatility. Then, using U.S. treasury yield data, we examine volatility fitting and estimate the market price of risk using the Heath–Jarrow–Morton model, Hull–White model, and humped volatility model. Comparison of the numerical results shows that the real-world humped volatility model is adequately developed.  
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1. Introduction
Interest rate models have been used for option pricing under a risk-neutral measure, and financial institutions are increasingly interested in applying it for assessment of interest rate risk. For this purpose, the interest rate model should be used under the real-world measure. Such a model is called a real-world model. 
To construct the real-world measure, it is necessary to estimate the market price of risk. In econometrics, the market price of risk has been estimated for short-rate models, such as in Dempster et al.[4] and Stanton[15]. In risk management, there are two main approaches to constructing the real-world measure: the so-called forward-looking and backward-looking approaches. Forward-looking approaches infer the real-world measure from market prices, such as option prices in Ross[14] (cf. Hull et al.[8]). 
Backward-looking approaches estimate the market price of risk from the historical behavior of forward rates. This approach was used in Norman[13], where it was numerically estimated in the BGM model[3].Yasuoka[17,18,20] introduced a theoretical framework for real-world modeling in the LIBOR market model[9], the Heath–Jarrow–Morton (HJM) model[5], and the Hull–White model[7], respectively. Since the backward-looking approach is consistent with traditional methods of market risk management, practitioners find it simple to adopt. For example, van der Vlies[16] studies the evaluation of mortgage prepayment risk using the framework of[18]. 
The LIBOR market model is well-known as a standard model for derivatives pricing because of its practicality and positive interest rates. However, negative interest rates have been observed in some countries for a number of years. For such situations, the HJM model is practical as a scenario generator of interest rates. In particular, the Hull–White model, a special case of the HJM model, admits a mean reversion structure of volatility. The one-dimensional Hull–White model has been successfully applied to risk-management in practice and is of use in theoretical study. 
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Because the Hull–White model admits a parametric volatility, it is convenient to estimate the market price of risk in this model, as shown in[20]. Taking advantage of this convenience, the correlation between the market price of risk and yields is studied in Yasuoka[19] for the Hull–White model under the real-world measure. Parametric volatility, as in the Hull–White model, is preferred in risk management because of its robustness. For example, in counterparty-credit-risk management, the potential future exposure of interest rate swaps can be evaluated by using the Hull–White model, as in[21]. 
However, the term structures of volatilities do not always satisfy mean reversion: the structure is sometimes a humped shape. See Kahn[10] and Heath et al.[6] for examples. Given the above circumstances, this paper aims to develop a real-world model with humped volatility, treating Hull–White volatility as a special case of humped volatility. There are various expressions of humped volatility, such as those in Agca[1], Mercurio and Moraleda[11], and Moraleda and Vorst[12]. Here, we adopt the mathematical representation used in[1]. 
Section 2 shows the estimation of the market price of risk in a humped volatility model. The argument used for this follows that in[20], where the real-world Hull–White model is constructed. Section 3 fits the volatility and estimates the market price of risk in the HJM model, Hull–White model, and humped volatility model, using U.S. treasury yield data. We examine the performance of volatility fitting and the estimation of the market price of risk by comparing results from these models. 
2. Real-world model with humped volatility
This section briefly introduces real-world modeling with the Gaussian HJM model and develops this for the case of humped volatility. The argument basically follows that of[18,20]. 
2.1 The Gaussian HJM model
We denote by  the instantaneous forward rate (hereinafter, the forward rate) at time  for maturity . The instantaneous spot rate  is given by . We denote by  a -dimensional volatility of , and we set  Let  be a -dimensional Brownian motion under a real-world measure  and  be the market price of risk, where the superscript  denotes transposition. 
The dynamics of  is represented in the HJM model by 
	
	
	(2.1)


where  denotes the inner product in . When the volatility  is deterministic, the HJM model is called Gaussian. In this paper, we always work with the Gaussian HJM model, and further assume that  is continuous in  and . 
The state price deflator is a stochastic process satisfying 

Using this, the no-arbitrage price is calculated under  as follows. Let  be the payoff at time  of some security. The no-arbitrage price of this option at time  is given by 

where  denotes the conditional expectation at  under . 
For a small time step ,  is represented by 
	
	
	(2.2)


from the Euler integral, where . Naturally, we may identify  with a -dimensional standard normal distribution. This discrete expression is used for the estimation of the market price of risk and for the Monte-Carlo simulation of .  
Volatility and principal component analysis 
We denote by  the length of time from  until . Let  be a sequence such that  for . Let  be fixed, and let  be a sequence of observation times, with  and , where  is the number of observations. In practice, we observe the forward rate  with a fixed time length  such that  We define the change of , keeping the maturity date , such that 

Principal component analysis of the dataset  gives the th eigenvalue  and the th principal component  for  We assume without loss of generality that all eigenvectors are chosen such that  and . We assume that  satisfies . For simplicity of notation, we abbreviate  and  to  and , respectively, for .  
Market price of risk in the Gaussian HJM model 
Assuming that the market price of risk is constant during the sample period, the th market price of risk  is estimated by[18] such that 
	
	
	(2.3)


where  denotes the sample mean. This solution is the maximum likelihood estimate, as shown in[20]. 
Monte-Carlo simulation of interest rates under  is referred to as real-world simulation. For numerically performing real-world simulation, we define the rolled trend of  as , and the th rolled trend score  as 
	
	
	(2.4)


The rolled trend represents the averaged change of the forward rate, reflecting the rolling effect, and  measures the change of the forward rate curve with respect to . For details, see[18] or[20]. 
Equation (2.3) is represented as 
	
	
	(2.5)



Property of real-world simulation
Once we obtain the value of , the real-world simulation can be performed from (2.2) by using 
	
	
	(2.6)


with time step  and each . Since  experimentally takes a small value, the drift term of the above is roughly dominated by the value of . For instance, when the market price of risk takes a large positive (resp., negative) value, then the real-world model predicts rising (resp., falling) interest rates.  
Mean-price property
Let us consider a period A and divide this into two subperiods  and . We denote by , , and  the market price of risk in periods , , and , respectively, and we denote the corresponding volatilities by , , and , again respectively. Assuming constant volatility through the whole period , the following proposition holds. That this property, the “mean price property,” holds is proven in[20]. 
Proposition 1.  We assume that  in the matrix sense of equality. Then, it follows that
                                                      (2.7)
in the vector sense. 
This relation roughly holds for actual data. Indeed, when we estimate the market price of risk in practice, the market price of risk  of the whole period takes a roughly intermediate value between  and . We shall see this feature in our numerical example. 
2.2 Humped volatility model
For simplicity we assume that  for , that is, that the historical dynamics of forward rates are driven by only the first volatility component. Where it will not cause confusion, we omit the superscript  for the order in principal components in the following. 
There are various expressions of humped volatility ([1,11,12], etc.). In this paper, we work with the expression of volatility proposed in[1]: 
      ,                                        
                                                               (2.8)
where , , and  are non-negative constants. It is known that this function is humped with respect to  when . Using this parametric representation, the real-world model can be built more specifically. 
In particular, when , becomes 
 ,                                            
                                                              (2.9)
which is well known as the volatility of the Hull–White model in the HJM framework. Here,  is referred to as the mean reversion rate. The real-world modeling in the Hull–White model is introduced in[20], where argument is similar to the following. For convenience, we call the volatility of (2.9) the Hull–White volatility. 
We approximate the first volatility component  with , and  chosen such that 
.
(2.10) 
For this purpose, consider the least-squares problem 

(2.11)
under the restriction 
.
(2.12)
The condition (2.12) is referred to as the norm-invariant condition; it ensures that the implied humped volatility and the first volatility component have the same norm. Solving this yields , and . From these parameters, we set the volatility  such that 
; .
(2.13) 
The approximation error in (2.10) is measured as the ratio of squared difference between the approximation to the first volatility component on average, such that .            (2.14)
Since the function (2.11) is not globally downward convex, these parameters may not be unique. Volatility fitting is a practical matter, so non-uniqueness is not a severe problem in this paper. In practice, the above approximation error might help to solve the least-squares problem. 
Next, we define an  -dimensional vector, by
 .            (2.15)                            
From (2.12), we see that . Hence, we may regardas the first principal component, rather than . Equation (2.13) is represented by
 ,                             (2.16)
in which the humped volatility  is defined anew as the first volatility component. We may estimate the market price of risk by (2.3) for the case of . 
In the Hull–White model, the parameters  and  are determined in the same manner, letting  in the above. For details, see[20]. The approximation error is similarly defined by (2.14), letting .  
Real-world model with humped volatility 
From Agca[1], we have that
 
.
It follows that
 .         (2.17)
From (2.13) and (2.17), we can numerically calculate . The market price of risk is estimated from (2.3). 
We finally present a form for real-world simulation. Set  for ; here,  indicates the date and  indicates the time length. Let  be an initial forward rate. For a small time step , we have 
                (2.18)
3. Numerical examples
3.1 Data and volatility fitting 
[image: ] 
Figure 1. Forward rates in U.S. Treasury market, where the labels 1, 5, and 10 indicate the forward rate over the six-month periods beginning at 1, 5, and 10 years, respectively. Yield data were retrieved from[2].
We use U.S. Treasury yields from 10 January 2003 to 25 January 2013. Setting  (years) and  for , the 6-month forward rate is obtained for every four weeks in this period. Figure 1 shows a historical chart of the implied forward rates. For our numerical examples, we split this sample period into two: period A is the first part, from 10 January 2003 to 4 January 2008, and period B is the last part, from 4 January 2008 to 25 January 2013. Period C is defined as the whole period, from 10 January 2003 to 25 January 2013. 
Figure 2 shows the forward rate curves of the three dates that bound the periods. From this, we see a flattening of the forward rates in period A, bull-steepening in period B, and falling in period C. The first rolled trend score  takes a small negative value for period A, and a larger negative value for periods B and C. From (2.5), we may expect that the value of the first market price of risk is negative in period A and strongly negative in periods B and C. For details of this qualitative estimation, see[20]. 
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Figure 2. Implied forward LIBOR curves at three days ( 10 January 2003, 4 January 2008, and 25 January 2013).
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Figure 3. First volatility component with Hull–White volatility and humped volatility
3.2 Volatility fitting
For convenience, we regard the 6-month forward rate as the instantaneous forward rate in our numerical analysis. Setting  (i.e., four weeks), we obtain the volatility components in the HJM model by principal component analysis. 
In the following, the numerical examples for periods A, B, and C are referred to as Cases A, B, and C, respectively. The first volatility components are approximated by the Hull–White volatility and by the humped volatility as explained in Section 2.2. Table 1 lists the volatility parameters and approximation error for Cases A, B, and C. In the table, “contribution rate” indicates the contribution rate of the first principal component. We see that the first volatility component explains more than 70% of the covariance for all cases. Figure 3 compares the volatilities of the three cases. 
The first volatility component is marked with a dotted curve in Figure 3. From this, the term structure of volatility admits a humped shape in Case A. In Case B, the volatility component is upward convex, rising to the right. Since period C is the direct sum of periods A and B, the volatility structure shows an intermediate shape between that of Case A and that of Case B. It is difficult to approximate these term structures when using Hull–White volatility since the Hull–White volatility is downward convex. 
In the humped volatility model, the approximation error is in the range – for all cases, which shows that the humped volatility works well for all cases. In the Hull–White model, the mean reversion rate  is negative in Cases B and C since the first volatility component roughly rises to the right. The approximation error is in the range – for three cases, which is obviously worse than the error when using humped volatility. Therefore, humped volatility approximates the first volatility component better than Hull–White volatility does for our sample. These features are visually verified in Figure 3 for all cases. 

	
	Case 

	
	A
	B 
	C  

	Start day
	10/1/2003 
	4/1/2008 
	10/1/2003  

	End day
	4/1/2008
	25/1/2013
	25/1/2013  

	Contribution rate
	0.823 
	0.725 
	0.738  

	
Humped volatility 
	
	0.249
	0.141
	0.177  

	
	
	0.0043 
	0.0001 
	0.0021  

	
	
	1.397 
	40.0 
	2.50  

	
	Error 
	0.088 
	0.073 
	0.069  

	
Hull–White volatility 
	
	0.0337 
	-0.073 
	-0.0320  

	
	
	0.0102 
	0.0075 
	0.0084  

	
	Error 
	0.174 
	0.195 
	0.174  


Table 1. Volatility parameters of three cases.
3.3 Estimation of the market price of risk 
In the Gaussian HJM model, the market price of risk is estimated for each case by (2.5), using an eight-dimensional model. 
In the humped volatility model and the Hull–White model, the market price of risk is estimated by the method described in Section 2.2. 
Table 2 compares the market price of risk among the three volatility structures for each case, where “HJM” means the first market price of risk as estimated by the eight-dimensional HJM model, and the values in parentheses represent the difference of the market price of risk from “HJM” in percentage. The market price of risk in “HJM” is  in Case A and  in Case B. Section 3.1 suggests that the market price of risk should be negative and larger in Case B than in Case A. The market price of risk is  in Case C, which is almost an intermediate value between Cases A and B. This is roughly explained by the mean price property, introduced in Section 2.1. 
In both the humped volatility model and the Hull–White model, the market price of risk is close to the value of “HJM”. The difference is less than about 1% in all cases. Consequently, there is no remarkable difference in the estimation of the market price of risk among volatility structures. We see that the market price of risk is adequately estimated in the humped volatility model. 

	Case 
	HJM 
	Humped volatility
	Hull-White  

	A 
	-0.392 
	-0.395  (0.83 ) 
	-0.389   (-0.76)  

	B 
	-0.701 
	-0.697  (-0.57) 
	-0.710   (1.30)  

	C 
	-0.594 
	-0.591  (-0.45) 
	-0.591   (-0.35)  


Table 2. Market price of risk in three cases. 
“HJM” indicates the first market price of risk as estimated by the eight-dimensional HJM model, and numbers in parentheses are the percent difference from “HJM”.
4. Conclusion
Here, we presented a practical method for real-world modeling of humped volatility. This model is a generalization of the real-world Hull–White model. Next, we showed numerical examples using U.S. treasury yields from 2003 to 2013. In this period, the term structure of the first volatility component was humped or upward convex. The humped volatility model showed better performance than the Hull–White model on volatility. 
The first market price of risk was estimated by using the first volatility component in the Gaussian HJM model, the humped volatility, and the Hull–White volatility. Comparing these values among three volatility structures, there were only small differences. Consequently, we see that the market price of risk is reasonably estimated in the humped volatility model. And the real-world humped volatility model has been practically introduced.  
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