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Abstract: We present closed-form formulas for the valuation of a European call option whose underlying process is as-

sumed to follow structural time series and the Markov regime-switching process through mean reversion described by a 

harmonic oscillator. In our model, each parameter has related corresponding economic meaning, and this leads to an easy 

analy-sis of the interplay between the option and business cycles. Forward rates are assumed under the Heath et al. (1992) 

HJM framework. The call option analytic formulas are obtained when the joint distribution of occupation times is speci-

fied and forward rates are restricted in a one-factor HJM model. 
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1. Introduction

A European option valuation can be regarded as the basis of derivatives valuation. Following the studies of Black

and Scholes (1973) and Merton (1973), the option literature has developed into a crucial area of research. However, 

evidence illustrates that option pricing formulas such as the Black–Scholes (BS) model do not perform well empirically; 

the poor empirical performance of the BS model is attributed to its asymmetric leptokurtic feature and volatility smile. 

Various attempts have been executed to manage this apparent failure of the BS model. One method for modifying the BS 

formula involves generalizing the geometric Brownian motion that is used as a model for the dynamics of log stock prices 

or stochastic interest rates incorporated into an option pricing model.  

Because asset–return distributions exhibit heavier tails, leptokurtic features, and volatility smiles, several researchers 

have modified asset–return distribution settings from statistical methods, such as assumptions of stochastic volatility and 

jump risk. Kou (2002), Glasserman and Kou (2003), and Hsu and Chen (2012) report jumps in the paths of interest rates 

and asset returns. Incorporating jump risk into a model can indicate that asset–return distributions exhibit heavier tails 

and leptokurtic properties. 

Heston and Nandi (2000) and Duan (1995) develop a closed-form option valuation formula for a spot asset whose variance 

follows the GARCH (p,q) process. Kim and Kim (2004) investigates the improvement in the pricing of Korean KOSPI 

200 index options when stochastic volatility is considered, and they compare the empirical performance levels of four 

classes of stochastic volatility option pricing models. Another assumption of stochastic volatility is the Markov regime-

switching (MS) model, such as in Janczura and Weron (2010). Chen et al. (2014) consider the valuation of European 

quanto call options whose underlying process is driven by a regime-switching jump-diffusion model with Markov-mod-

ulated Poisson processes.  

Hamilton (1989) develops an MS model for GDP that assumes that the growth rate follows a nonlinear stationary 

process and is subjected to discrete shifts in regimes, where the regimes are discrete episodes over which the dynamic 

behavior of the series is markedly different. The MS model not only provides improved statistical revision but also prov- 
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ides economic intuition for the underlying process. This implies that the corresponding option valuation has more eco-

nomic meaning. Therefore, option valuation can offer essential information for portfolio managers and hedge strategy 

managers. 

On the basis of the economic intuition to select an appropriate model, we choose the structured time series (STS) 

model with mean revision for this study. The STS model (Harvey, 1993) is constructed in terms of components that have 

a direct interpretation, because it is regarded as the sum of trend, seasonal, and irregular components; a cycle is also 

incorporated. The STS model can not only provide forecasts but also present a set of stylized facts (Jones (2016); Jones 

and Tarp (2017)). Several technical developments and applications of the STS model (Koopman and Lucas, 2005; Akar 

and Baskaya, 2011) are available, and a summary of the main structured model and its properties can be found in Harvey 

(1993). In addition, asset returns are shown in mean-revision style in certain financial markets. To combine the cycle-

trend component of the STS model and mean-revision behavior, Moreno and Platania (2011) assume that the mean-

reversion level is modeled using a harmonic oscillator; they use this new model to price a zero-coupon bond. Laine (2019) 

shows how various useful models can be constructed for analyzing trends and other sources of variability in geodetic time 

series. Galati et al. (2016) extract the financial cycles of the United States and the five largest Euro area countries over 

the period 1970–2014 using the STS model. 

The STS model detailed in the present paper is expressed in harmonic-oscillator form to facilitate the determination 

of the intuitive and economic relationship between the model’s parameters and various financial markets. This is an ad-

vantage for valuing European call options. In addition, we extend the approach of Moreno and Platania (2011) because 

assuming that the underlying process depends on the business cycle appears reasonable. The underlying process is reduced 

to a lower level in economic recessions, whereas the long-term level tends to increase during economic expansions. How-

ever, this approach does not totally exploit business cycle characteristics. As mentioned, the asset prices behave differently 

in different regimes. Therefore, model parameters are assumed to be generated by hidden Markov motions (HMM). To 

combine statistical and economic perspectives, we price a European option call under the STS and MS (STS-MS) models 

with mean reversion described by a harmonic oscillator.  

We simulate the underlying process and European call option prices using the STS-MS model. We also analyze the 

sensitivity of European call option prices regarding changes in business cycle patterns, underlying volatility, and long-

term equilibrium level. The results of our simulation conducted using the STS-MS model verify the advantage of our 

model.  

If the stochastic interest rate is incorporated into the pricing model, the accuracy of the option valuation is enhanced. 

Hence, stochastic interest rates are also considered in our model. The term structure of interest rates is modeled after the 

Heath et al. (1992) HJM model to easily extend it to multiple factors. 

The contributions of this paper include the compilation of statistics that were previously lacking, inclusion of interest 

rate risk, discussion of the effect of business-cycle patterns on the evaluation of European call options, and provision of 

information for investors and hedgers who adopt investment or hedging strategies for European call options in various 

financial markets under different business-cycle patterns. 

After deriving the closed-form formula of a call option under the STS-MS model with mean reversion, we restrict 

the forward rate to follow the one-factor HJM model. We then obtain the analytic solution for a European call option. The 

remainder of this paper is organized as follows. In Section 2, we construct an STS-MS model with mean reversion and 

two transition probability matrices. In Section 3, relevant mathematics and probability concepts are presented. In Section 

4, closed-form formulas for the vanilla European call option are presented under the STS-MS model. In Section 5, the 

simulation and sensitivity analysis are presented, and finally, Section 6 details the conclusions. 

2. Model framework

    The description of regime-switching space is as follows: A continuous-time financial market is considered with a 

finite time horizon , where under a complete probability space . Define 

, ( ) as a Markov chain; is a transition probability matrix for . Denote the 

[0, ]T =  T  ( , , )  P

 ( )
t

X t


=X ( ) NX t  Π X
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elements of as ; that is, . The transition matrix is constructed so that each entry is a 

transition function .   

Denote asset price and interest rate as and , respectively. An STS and STS-MS model with a mean-reversion 

property, regime shift, and cyclical trend is described as follows: 

, (1) 

;(2) 

where ; represents the mean-revision speed of ; and  represents the long-term equilibrium 

level, which follows a time-dependent cyclic process according to a harmonic oscillator in which , , and are 

the semiamplitude, temporal frequency, and intercept of the wave, respectively. Moreover, represents a standard 

Brownian motion for asset prices . In our model, let  and be modulated by a common contin-

uous time; a finite-state Markov chain is given as follows: 

, , (3) 

where denotes an inner product; and denote the transition probability matrices of volatility and 

growth rate, respectively. 

The characteristics of stock returns documented in the relevant literature involve a negative correlation between 

stock returns and volatility (Scott, 1997). However, errors are easily caused in estimated parameters if high growth rate 

and low growth rate regimes are determined by solely using the volatility value. McConnell and Perez-Quiros (2000) and 

Buckle et al. (2002) propose a model in which the low growth phase of the business cycle is a regime with two states and 

the high phase of the volatility cycle is a regime with two states. As noted by Buckle et al. (2002), “Such a hierarchical 

classification of time scales is one of the features of hidden Markov models and provides a relatively simple and open 

structure on which to build an overall model for asset price path.” This methodology is advantageous in the STS-MS 

model because the STS model comprises trend, seasonal, and irregular components. When the individual transition prob-

ability matrix is given a one-to-one individual component, the estimated parameters directly reflect the economic target. 

3. Prior knowledge

The pricing formulas of a European call option are obtained under a constant interest rate and stochastic interest rate.

First, for example, we explain how to price a European call option under a HMM and a constant interest rate. 

3.1 Pricing call option under an HMM 

Let and denote the right-continuous, complete filtration generated by the Markov chain 

of an asset and asset price processes, respectively. Define as an enlarged -algebra generated by

and for each . Suppose that two regimes are involved. Consider a European call option  on a stock

with strike price and maturity . Under the constant interest rate and the HMM (under incomplete information), 

the payoff of can be expressed in terms of occupation times given by 
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 ( , ) Prij s t ss t X j X i+ = = =
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, (4) 

where ; (5) 

; ; .(6) 

represents the volatility of the asset price in regime . in Eq. (4) is the well-known BS formula 

under complete information. Through the observation of Eq. (5), the traditional pricing formula expressed in the state 

view is transformed into the occupation–time view of the BS formula. The state call price in Eq. (4) can 

be regarded as the vanilla call option price under the conditional filtration (including filtration ). The ker-

nel call price can be derived using the BS formula in which the adjusted parameters are multi-

plied by the corresponding state’s occupation time. The adjusted parameters in Eq. (6) are those modulated by the Markov 

chain. In the preceding illustration, the stock price volatility depends on the states. Therefore, the adjusted parameters 

should be computed as the volatility square multiplied by the corresponding state’s occupation time. If the joint 

distribution of occupation times is specified, derivatives are priced using the kernel price and adjusted param-

eters under the underlying process generated by the HMM. This method facilitates the mathematical tractability of pricing 

derivatives under the underlying process generated using the HMM. Therefore, our objective is to develop a kernel price 

formula (in a traditional expression) and adjusted parameters.  

3.2 Change of measure under the HMM 

Because the market described by the HMM is incomplete, more than one equivalent martingale measure exists. Gerber 

and Shiu (1994) pioneer the use of the Esscher transform to value options in an incomplete market. Liew and Siu (2010) 

reveal that the Esscher transform and the extended Girsanov principle under the HMM lead to the same pricing result. 

Therefore, we use the extended Girsanov principle under the HMM (Liew and Siu, 2010) to determine the risk-neutral 

measure , which is given as follows: 

Let denote the market price of risk that is assumed constant on each regime and each , where 

is a time index. Write for the probability density function of a standard normal distribution. Consider a 

adapted process given by: 

, , , 

Define a process where 

. 

Therefore, is a adapted process and a -martingale. Define a new probability measure

on by using the extended Girsanov principle by defining . 

Under the risk-neutral measure , Eq. (1) can be expressed by 
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. (7) 

The market price of risk depends on the states under the STS-MS model. According to Moreno and Platania 

(2011), we have 

(8) 

where . 

3.3 Pricing a call option under forward measure 

In this subsection, we introduce the concept of change of measure, which is required for the discussion on pricing call 

options. Define a Radon–Nikodym derivative for maturity as , where is the 

money market account. By using the measure , we obtain the present value of a European call option determined 

using 

, 

where represents the payoff function and represents the characteristic function under the measure . 

Given the -martingale stochastic process , can be derived as follows: 

. 

Note that the definition of the characteristic function is set in a natural measure. These notations are adopted because 

they are conveniently represented pricing under the forward measure.  

4. Pricing a call option under the STS-MS model

4.1 Pricing a kernel of a call option under the STS-MS model 

First, our objective is to develop a kernel price formula (in a traditional expression) and adjusted parameters for a 

European call option under the STS-MS model. We consider two conditions: constant interest rate and stochastic interest 

rate. 

4.1.1 Condition 1: Constant interest rate 

Under the constant interest rate and the HMM, the kernel price of a call option is given by 

. 

Proposition 1. Consider a vanilla call price with a payoff at time and the constant interest rate under the 

STS-MS model. Let and assume that is bound and integrable for some 

, such that the moment generating function (mgf) of satisfies . At the current time 
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, the traditional call price is: 

, (9)

where , (10) 

, (11) 

. (12) 

Proof: See Appendix A. 

Given the characteristic function of , the term in Eq. (12) can be obtained. 

4.1.2 Condition 2: Stochastic interest rate 

The stochastic differential equation for the instantaneous forward rate under the one-factor HJM model is 

obtained using 

(13) 

where is the drift function and is a standard Wiener process. The relative correlation between 

and is . 

Under the risk-neutral measure , the forward rate , the spot rate , and ZCB price processes can be 

expressed as follows: 
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STS-MS model. The restriction of follows Proposition 1. At the current time , the traditional call price 

is 

, 

, 

where , and follow Eqs. (10), (11) and (14), and 

. (15) 

Proof: See Appendix B. 

Given the characteristic function of and , the term in Eq. (15) can be obtained. 

Pricing a call option under the STS-MS model 

Propositions 1 and 2 contain the sets of the adjusted parameters and , including 

involved in and . The kernel call price and can 

be derived using the traditional pricing formula in which the adjusted parameters and are multiplied by 

the corresponding state’s occupation time. 

Under the STS-MS model, , , is given by 

, 

where the kernel price is defined in Propositions 1 and 2. and represent the 

joint distribution of occupation time for volatility and growth rate, respectively. Given the joint distribution of occupation 

time for volatility and growth rate, the closed-form formulas of a European call option can be obtained under the STS-

MS model. 

5. Numerical analysis

We employ Proposition 5 to simulate European call option prices using the STS-MS model. We also analyze the

sensitivity of European call option prices under changes in business cycle patterns, underlying volatility, and long-term 

equilibrium level. 
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Markov chain such that equation (3.8) in McKinlay (2009) holds and  in the symmetric matrix. We assume that 

 for Type 1 and  for Type 2 because if  increases (decreases), decreases (increases) (Pedler, 

1971). 

In a harmonic oscillator, and partly depend on a Markov chain. Therefore, we assume that and 

have different levels in each regime. For example, = 1.1 and = 2.2; = 0.25 and = 

0.55. To simplify the analysis, the other parameters are set to the same value and the interest rate is kept constant. The 

parameters are set as follows: = (0.8, 0.005/3, 0.025, 0.05). 

5.1 Simulation of stock price under the STS-MS model 

First, the stock price path is simulated using Monte Carlo simulation in the STS-MS model. By observing the stock 

price path, we can obtain the behaviors underlying the different economies. We can then understand the relationship 

between economical meaning and the parameter setting and infer the call price’s performance in the STS-MS model. This 

highlights why call prices are valued in the STS-MS model. 

Consider the stock price process without the MS effect; this is called the STS model.[1] Volatility has the Markov 

switching (MS) effect, and this is called the STS-MS-OnV model. [2] Long-term equilibrium level has the MS effect, and 

this is called the STS-MS-OnB model. [3] The STS model is regarded as the benchmark model. The baseline model is 

subtracted from the other two models, and the results are illustrated in Figure 1. 

Figure 1 illustrates that stock price has an obvious harmonic oscillator effect; thus, the difference in stock prices in 

the two models also has a harmonic oscillator effect. When the MS risk is included, the stock price is lower. This implies 

that the values of STS-MS-OnV and STS-MS-OnB are positive, and when the long-term equilibrium level is doubled, the 

effects of stock price differences are stronger than the doubling of the volatility; thus, the STS-MS-OnB line is above the 

STS-MS-OnV line. 

[1]. and are constant in the STS model. The initial stock price is 50. = (1.1, 0.25, 0.8, 0.005/3, 

0.025, 0.05). 

[2]. is constant in the STS-MS-OnV model. The initial stock price is 50. = (1.1, 0.8, 0.005/3, 0.025, 

0.05), = 0.25, and = 0.55. 

[3]. is constant in the STS-MS-OnB model. The initial stock price is 50. = (0.25, 0.8, 0.005/3, 0.025, 

0.05), = 1.1, and = 2.2. 
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Figure 1. Simulated stock price difference path in the three models 

Figure 2. Difference in stock price in long- and short-term economies 

In Figure 2, the “diff-lambda” curve shows the stock prices in a short-term economy minus the stock prices in a 

long-term economy. The curve is almost always greater than zero because the long-term equilibrium level is positive. 

Comparing “diff-sigma” and “diff-lambda” reveals that the uncertainty property caused by the Markov-switch risk is 

different from the uncertainty property caused by the volatility risk. This thus motivates us to expand the STS model into 

the STS-MS model.  

5.2 Simulation of European call option price using the STS-MS model 

In this section, we focus on the effect of a change in a business cycle on call option prices. In Figure 3, “diff_modelV” 

and “diff_modelB” respectively represent the call price difference between different economies in the STS-MS-OnV and 

STS-MS-OnB models; “diff_modeltwo” represents the call price difference between different economies in the STS-MS 

model. 
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Figure 3. Difference in call price in long- and short-term economies 

In Figure 3, the three lines are mostly above zero, indicating that the call price in the long-term economy is more 

frequently greater than that in the short-term economy. In addition, the call prices of the STS-MS model exhibit huge 

amplitudes. Therefore, the differences between differing economies are more easily expressed using the STS-MS model. 

This is in agreement with our expectations. 

6. Conclusion

Under an STS-MS model that includes stochastic interest rates and stochastic assets, we derive the valuation of a

European call option. To find the analytic formulas of the call option, we restrict the instantaneous forward rate process 

as a one-factor HJM model. Furthermore, the numerical analysis indicates that stock price characteristics in the STS-MS 

model and call price in the STS-MS model are well matched for different economies. Our results suggest several prom-

ising directions for future research. Some exotic options can be solved using our approach. The interplay between option 

and business cycle can be further analyzed. Based on the STS-MS model, an empirical study can conducted to examine 

related call options and provide valuable tools for option management under changing economic conditions.  

Appendix A (proof of Proposition 1) 

Proof: 

. (A1) 

According to Proposition 1 in Moreno and Platania (2011), we have 

. (A2) 
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Substituting Eq. (A2) into Eq. (A1) yields 

where and . 

For a result similar to the following proof, see Raible (2000, pp. 64–66): 

, 

where . (A3) 

Appendix B (proof of Proposition 2) 

Proof: The result in Section 2.4 implies that 

and 
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In addition, 
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