Observation on clinical efficacy of hyperbaric oxygen combined with neurosurgery in treating craniocerebral trauma

Sung-Won Kim

Medicine, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China

Abstract: The probability of craniocerebral trauma is higher and higher, along with the increasing number of traffic and construction accidents in our lives which cause physical injuries. Main symptoms of such injuries are headache, dizziness, and impairment in language function and limb activity to varying degrees. For patients with severe craniocerebral trauma whose nerve tissue are greatly damaged, there are difficulties in effectively recovering, which may lead to some obstacles in consciousness, intelligence and even action. The current treatment research has found that inappropriate treatment method will increase patients' mortality or disability rate. At present, the effect of hyperbaric oxygen treatment for craniocerebral trauma has been recognized in many clinical trails, seen from increased cure rate.

Keywords: Clinical efficacy; hyperbaric oxygen; neurosurgery; craniocerebral trauma

Received: December 13, 2019 Accepted: January 15, 2020 Published: January 21, 2020

1. Status of clinical treatment in patients with craniocerebral trauma

At present, craniocerebral trauma has become a common clinical surgical disease. Past experience showed that the protection of patients during surgery and the prevention of post-surgery intracranial infection didn't gain enough attention, which often led to coma, vomiting, and even cerebral edema and hydrocephalus. These consequences affect each other and damage patients' body function to different degrees, reduce the body resistance and aggravate the disease. Moreover, because of the blood-brain barrier, delivery of antibiotics is inefficient and shows poor efficacy. The post-surgery recovery is far from ideal.

2. Hyperbaric oxygen combined with neurosurgery in treating craniocerebral trauma

It is widely known that craniocerebral trauma can be life-threatening. Patients with severe craniocerebral trauma will suffer from impairment in consciousness and breathing. With the progress of modernization, the acceleration of urbanization and mechanization of human interaction have led to an increasing morbidity of craniocerebral trauma. Effective and timely treatment methods should be adopted to avoid further serious damage in brain tissue, thus relieving the illness as soon as possible, alleviating the suffering of patients and reducing the burden on the family. It is often unknown where the patient's disease occurs in the brain. Even if the brain is scanned by X-ray, there are many irresistible factors and changes during the operation. Craniotomy is a very common and critical treatment method. Doctors need to analyze and locate the craniocerebral trauma or edema through various aspects, and remove necrotic
tissue through craniotomy. As mentioned above, although the conventional treatment method has certain effects, it is limited in thoroughly eliminating cerebral anoxia and edema. In other words, patients may suffer from poor recovery.

Under the above situation, hyperbaric oxygen treatment is favored by people, in which the patient is in a very professional high-pressure environment. Pure oxygen to be inhaled is released by devices with negative ion, which has no toxin, invasiveness or side effects. This treatment is natural and ecological. Under hyperbaric oxygen, the oxygen pressure in brain tissue is greatly increased, which not only provides sufficient oxygen but also contracts blood vessels, reduces the permeability of blood vessels and cerebral edema, and effectively ensures sufficient oxygen supply for patients. It can reduce the occurrence of vertigo and palpitation, put the central system of the brain into a relatively excited working state, and improve the recovery of human body function. Hyperbaric oxygen also helps a lot once the patient has coma of different degrees. Many medical studies have found that the effect of hyperbaric oxygen is better than that of awakening agents in waking up coma patients. In addition, hyperbaric oxygen can also effectively reduce the volume of patients' blood vessels. Studies on many patients have shown that it can obviously promote the recovery of ruptured intracranial vessels, which cannot be achieved by the conventional treatment. Fast recovery of intracranial vessels accelerates that of damaged brain tissue function. Under hyperbaric oxygen, the symptoms mentioned above, such as cerebral anoxia and edema of the patients, can be further treated, and then the brain tissue function can be recovered. Moreover, damaged neurons can be fully stimulated, thus preventing cells from necrosis, and relieving some symptoms of craniocerebral trauma. Objectively speaking, hyperbaric oxygen is not the final treatment for craniocerebral trauma as it cannot revive dead cells.

3. Conclusion

Through some analysis, it can be concluded that hyperbaric oxygen treatment can speedily increase the cerebral blood oxygen content of patients with craniocerebral trauma and promote brain tissue regeneration. Although inflammation cannot be avoided, it is possible to reduce stress response caused by that and relieve patients' clinical symptoms. By consulting some comparative studies, hyperbaric oxygen treatment should be carried out immediately when patients' vital signs are relatively stable. In some clinical treatment examples, poor recovery effect and sequelae are caused by missing treatment opportunity. Timely hyperbaric oxygen treatment can obviously reduce the occurrence of "vegetative" state and disability sequelae, and enable quick recovery of patients' body functions. To sum up, hyperbaric oxygen treatment for patients with craniocerebral trauma needs to be combined with conventional treatment methods to achieve the desired efficacy.

References

4. Ren LX and Zhao DM. Observation on clinical efficacy of hyperbaric oxygen combined with neurosurgery in treating patients with craniocerebral trauma [J]. World Latest Medicine Information 2019; 19(81): 61+64.