Comparison of the efficacy of mifepristone and marvelon treatment for perimenopausal dysfunctional uterine bleeding

Yang Xiaopin
Zhengzhou City People’s Hospital of Zhengzhou City, 450000

Abstract: Objective: To investigate the efficacy of mifepristone and Marvelon treatment for perimenopausal dysfunctional uterine bleeding. Method: 60 patients were randomly selected from January 2016 to June 2016 in our hospital for treatment of menopausal goutenopsis. After different treatment regimens were communicated with the patients, the patients were treated with different methods. In the experimental group (28 cases), mifepristone was used to treat dysfunctional uterine bleeding. The control group (32 cases) was treated with Marvelon treatment and the results were compared between the two groups. Results: The effective rate of the treatment group was significantly higher than the control group, the difference was significant and statistically significant (P < 0.05). There were no significant differences in folliclein, luteinizing hormone, estrogen and progesterone between the two groups before treatment (P > 0.05). After treatment, the two groups were treated with folliclein, luteinizing hormone, estrogen, progesterone and other aspects were significant, and statistically significant (P < 0.05). Conclusion: The treatment of perimenopausal dysfunction can be treated with mifepristone.

Keywords: mifepristone; Marvelon; perimenopausal dysfunction

Introduction

Perimenopausal functional bleeding mainly manifested as irregular menstruation, menstruation may not come for a long time, may also be frequent, and because menstrual bleeding more patients with moderate to severe anemia. In the clinical anovulatory dysfunctional uterine bleeding is the most common, accounting for about 90% of dysfunctional uterine bleeding, often occurs in adolescence and perimenopausal period[1]. Anovulatory dysfunctional uterine bleeding in the clinical treatment of the main use of in vitro increase progesterone, to antagonize the role of estrogen on the endometrium, so that the endometrium from the proliferative phase to the secretory phase, to stop bleeding purposes. The purpose of this study is to explore the efficacy of mifepristone and Marvelon treatment of perimenopausal dysfunctional uterine bleeding, are reported below.

1. Materials and method

1.1 General information

Patients were randomly selected from January 2016 in December 2016 in our hospital due to menopausal dysfunctional treatment of patients with 60 cases. Exclusion criteria: patients with severe mental illness; patients with coagulopathy; patients with malignant tumors and genital metastasis. Among the 60 female patients aged 49-53 years, mean age (51.6 ± 0.6) years. The general condition of the patient has little effect on the content of this study.

1.2 Methods

The experimental group using mifepristone (Hubei Gedian Fufu Pharmaceutical Co., Ltd. production, the Chinese medicine Zhunzi: H2003351) treatment, in the fasting or eating 2 hours after taking, the dose of 25-50 mg, 2 times / day. Marvelon (produced by N.V. Organon, approval number: H201130491), dose: 2 tablets / day, after hemostasis changed to one day. 3
weeks a course of treatment, after 3 courses of treatment to observe the effect.

1.3 Observation indicators

The treatment effect is divided into cured, markedly effective, effective and no effect. Cure: During treatment, patients do not have symptoms of bleeding, and menstruation after menstruation or menopause. Markedly effective: bleeding decreased during treatment, withdrawal after menstrual recovery also returned to normal. Effective: bleeding during treatment, but can control, after menstrual withdrawal after treatment better than before treatment. No effect: the symptoms of patients before and after treatment did not change much. Treatment efficiency = (cured + markedly effective + effective) / total number of patients.

1.4 Statistical analysis

The study used in the treatment efficiency, hormone levels and other main sentences were analyzed using statistical analysis software SPSS21.0, which measurement data using \(t \) test, the count data using chi-square test, and when \(P < 0.05 \), the table difference was significant and statistically significant.

2. Results

2.1 Therapeutic effect

The effective treatment group was significantly higher than the control group, the difference was significant and statistically significant \((P < 0.05) \), see Table 1.

<table>
<thead>
<tr>
<th>Group</th>
<th>Cure</th>
<th>Markedly effective</th>
<th>Effective</th>
<th>No effect</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group (28 cases)</td>
<td>9 (0.32)</td>
<td>11 (0.39)</td>
<td>7 (0.25)</td>
<td>1 (0.04)</td>
<td>27 (0.96)</td>
</tr>
<tr>
<td>Control group (32 cases)</td>
<td>6 (0.19)</td>
<td>9 (0.28)</td>
<td>10 (0.31)</td>
<td>7 (0.22)</td>
<td>25 (0.78)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.364</td>
</tr>
<tr>
<td>(P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

2.2 Comparison of the two groups of patients with hormone

Before treatment in the two groups of patients with thorn follicle hormone, luteinizing hormone, estrogen, progesterone and other aspects of little difference, no statistically significant \((P > 0.05) \). However, after treatment, the two groups of patients in the thorn follicle pheromone, luteinizing hormone, estrogen, progesterone and other aspects of significant and statistically significant \((P < 0.05) \), see Table 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>Thrombosis follicle</th>
<th>Progesterone luteinizing hormone</th>
<th>Progesterone</th>
<th>Estrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Experimental group</td>
<td>11.5±1.5</td>
<td>4.9±1.2</td>
<td>8.4±0.9</td>
<td>4.2±0.6</td>
</tr>
<tr>
<td>Control group</td>
<td>11.3±1.6</td>
<td>8.9±1.5</td>
<td>8.8±0.7</td>
<td>72±1.0</td>
</tr>
<tr>
<td>(t)</td>
<td>0.724</td>
<td>9.241</td>
<td>0.821</td>
<td>10.239</td>
</tr>
<tr>
<td>(P)</td>
<td>0.516</td>
<td>< 0.01</td>
<td>0.638</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

3. Discussion

Dysfunctional uterine bleeding is due to HPO axis imbalance caused by menstrual disorders characterized by abnormal uterine bleeding, the diagnosis of dysfunctional uterine bleeding need to rule out the organic disease. The normal menstrual
cycle is regulated by estrogen, progesterone, thrombolytic hormone, luteinizing hormone and other hormones. Dysfunction of blood is due to the patient’s mental factors, stress, which may also be due to imbalance in the regulation of HPO axis, resulting in a variety of sexual disorders in the body and dysfunctional uterine bleeding\cite{2}. Dysfunction of blood according to the occurrence of age can be divided into adolescent dysfunctional uterine bleeding, perimenopausal dysfunctional uterine bleeding, perimenopausal dysfunctional uterine bleeding is anovulatory dysfunctional uterine bleeding, mainly in the age of 40 years of age before and after menopause, clinical manifestations: Frequent, irregular menstrual cycle, menstrual volume and more. Anovulatory dysfunctional uterine bleeding mechanism: anovulatory dysfunctional uterine bleeding in patients without ovulation, corpus luteum did not produce long-term only estrogen in the body, and estrogen on the endometrial function is to promote endometrial hyperplasia thick, glandular epithelial dysplasia, so no ovulation in patients with menstrual period is relatively long, while estrogen easily promote mucopolysaccharide polymerization, interstitial vascular permeability decreased, affecting the exchange of blood vessels, and then lead to local endometrial ischemia, necrosis leads to the onset of menstruation, but mucopolysaccharides can prevent the endometrial shedding, so the endometrium is not synchronized off, causing long-term irregular bleeding of the endometrium, so anovulatory endometrial hemorrhage showed more menstrual flow.

Marvelon treatment is currently using a wide range of contraceptives, because of its main ingredient for progesterone, for patients with dysfunctional uterine bleeding can use it to antagonize the role of estrogen, and thus the endometrium from the original hyperplasia to secretory phase, return to normal menstrual period\cite{3}. Mifepristone is a strong progesterone, with the progesterone receptor and glucocorticoid receptor antagonism, mifepristone endometrial receptors for the relatively high affinity, so compared with the mother of anti-estrogen antagonist. The role of stronger, and mifepristone can inhibit the HPO axis, inhibit the development of follicles, and thus follicular decline, so the use of mifepristone in terms of the vast majority of patients into menopause\cite{4}. The effect of mifepristone on the level of hormone in the experimental group was significantly lower than that before treatment, and the effective rate of the treatment group was higher than that of the control group. The difference was statistically significant.

In summary, for patients with perimenopausal dysfunctional uterine bleeding can be treated with mifepristone, efficacy is worthy of promotion.

References