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Abstract: Generally, the content of the hyperspectral image pixel is a mixture of the reflectance spectra of the different 

components in the imaged scene. In this paper, we consider a linear mixing model where the pixels are linear combina-

tions of those reflectance spectra, called endmembers, and linear coefficients corresponding to their abundances. An 

important issue in hyperspectral imagery consists in unmixing those pixels to retrieve the endmembers and their corre-

sponding abundances. We consider the unmixing issue in the presence of small targets, that is, their endmembers are 

only contained in few pixels of the image. We introduce a thresholding method relying on Non-negative Matrix Factor-

ization to detect pixels containing rare endmembers. We propose two resampling methods based on bootstrap for spec-

tral unmixing of hyperspectral images to retrieve both the dominant and rare endmembers. Our experimental results 

on both simulated and real world data demonstrate the efficiency of the proposed method to estimate correctly all the 

endmembers present in hyperspectral images, in particular the rare endmembers. 
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1. Introduction

Over the last decades, hyperspectral imaging, also

known as imaging spectroscopy, has faced a growing 

interest in multiple fields such as astronomy, agronomy, 

military, geography
[1-4]

. In hyperspectral images each 

pixel is acquired by recording images across numerous 

spectral bands from visible light to infrared, such as the 

acquired information is an approximation of the reflec-

tion spectra of the imaged scene. Given the spatial reso-

lution of the current hyperspectral sensor, a pixel gener-

ally contains multiple materials. As each material has a 

given reflection spectrum, the observed spectrum is a 

mixture of those materials’ spectra called endmembers
[5]

. 

Hyperspectral unmixing consists in estimating the 

endmembers present in the dataset and the abundances of 

those endmembers in each pixel. Unmixing hyperspectral 

images gives us access to valuable subpixel infor-

mation
[6]

. In this paper a linear mixing model
[7]

 is used, 

in which the endmembers are assumed not to interact 

with each other. This is a valid approximation on a mac-

roscopic scale
[8]

. The linear mixing model describes the 

observed pixels as a linear combination of the endmem-

bers, where the linear coefficients are the proportion of 

each endmember in the pixel. 

To deal with the unmixing problem, several meth-

ods have been proposed
[8,9]

. The Pure Pixel Index (PPI)
[10]

 

method estimates the endmembers using geometrical 

projection of the dataset. Another geometrical method is 

the N-finder (N-FINDR)
[11]

 method which determines the 

minimal volume simplex fitting the observed dataset, the 

endmembers are then the vertices of this simplex. The 

Vertex Component Analysis (VCA)
[12]

 method projects 

data features to find the endmembers. Those three meth-

ods depend on the assumption that each endmember is 
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present and is not mixed in at least one pixel of the da-

taset. This pure pixel assumption is not always fulfilled. 

The Independent Component Analysis (ICA)
[13]

 is a sta- 

tistical approach. This method assumes that the 

endmembers are independent of one another
[14]

. Gener-

ally this hypothesis is not fulfilled in the hyperspec-

tralimages case
[14]

. Another method that uses a statistical 

approach is the Non-negative Matrix Factorization 

(NMF)
[15]

 which does not rely on pure pixel assumption. 

It consists in factorizing the dataset in two matrices. The 

endmember matrix and the abundance matrix, both sub-

ject to non-negativity constraint. The abundance matrix 

is also subject to an extra sum to one constraint. Numer-

ous methods derivate from NMF have been proposed by 

using some a priori knowledge
[16]

 or by adding extra 

constraints such as sparsity constraint
[17]

. 

In this paper we focus on hyperspectral images 

containing possibly two types of endmembers: endmem-

bers present in many, or conversely very few pixels of 

the entire image. They are called dominant and rare 

endmembers respectively. While processing hyperspec-

tral images, it is very important to identify a so-called 

“signal subspace”
[18,19]

. As shown in
[18]

, it is a difficult 

task when rare signal components are present in the hy-

perspectral image
[18]

. Detection of this kind of rare 

endmembers, which can be seen as anomalies carrying 

information of interest, remains a challenge for the un-

mixing methods
[20]

. We propose here a thresholding 

method based on NMF to detect rare pixels which con-

tains rare endmembers and two unmixing methods based 

on bootstrap resampling
[21,22]

 and NMF to unmix both 

dominant and rare endmembers. 

The remainder of this paper respects the following 

organization: Section II describes the linear mixing mod-

el and the NMF algorithm. Section III introduces a 

threshold criterion to detect rare pixels. Section IV pre-

sents bootstrap resampling method for hyperspectral un-

mixing and highlights two ways to unmix both rare and 

dominant endmembers using bootstrap resampling. Ex-

perimental results are available in Section V. Section VI 

is the conclusion of this paper. 

Notations: In the remainder of this paper, the fol-

lowing notations are used: scalars are denoted by italic 

lowercase roman, like a; vectors by boldface lowercase 

roman, like a; matrices by boldface uppercase roman, 

like A. 

2. Materials and methods 

In this section we overview the Non-Negative Ma-

trix Factorization and its limits in presence of rare 

endmembers or small ground targets. In the following 

sections we consider a hyperspectral image with P pixels, 

L spectral bands and N endmembers. We denote the im-

age as the P × L matrix Y = [y1, y2, … , yP]T . 

2.1 Linear mixing model 

In hyperspectral images, pixels are a mixture of dif-

ferent spectral reflectances of materials called endmem-

bers. In the following, we use the linear mixing model to 

describe those mixtures. Let yp ∈ ℝ+
1×L be a mixed pix-

el, that is, it contains different materials, of a given hy-

perspectral dataset with L spectral bands. Let N be the 

number of endmembers in this dataset. The linear mixing 

model describes this pixel as a linear combination of all 

the endmembers present in the dataset and the linear co-

efficients are their corresponding abundances in the pixel. 

Then the pixel vector yp can be expressed as
[7, 8]

: 

 
yp = ∑ apksk + np

N

k=1

   (1) 

or  

 yp = apS + np          p = 1, … , P  (2) 

where sk is the k
th

 endmember and apk is its cor-

responding abundance in the pixel p. np is an additive 

noise vector or model error, and ap is the abundance 

vector of pixel p. 

By rearranging all the P pixels of the whole hyper-

spectral image in matrix formation, the mixing model 

can be expressed as: 

 Y = AS + N  (3) 

where each row of Y ∈ ℝ+
P×L  contains the spectral 

information of a particular mixed pixel, 

S = [s1, s2, … , sP]T ∈ ℝ+
N×L  is the endmember matrix, 

A ∈ ℝ+
P×N  is the abundance matrix whose each row is 

the abundance vector of the corresponding single mixed 

pixel. The matrix N ∈ ℝ+
P×L  is the noise matrix. 

To be physically meaningful, the matrices Y, A and 

S are subject to non-negativity constraint and the abun-

dance vectors are subject to the sum to one constraint 

expressed as follows
[23]

 : 

 S ≥ 0, A ≥ 0, A1P = 1P (4) 

where 1P = [1,1, … , 1]T is a vector of P ones. 

2.2 NMF unmixing 

Unmixing hyperspectral images consists in revers-
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ing the mixing model.  The NMF is an unmixing meth-

od subject to nonnegativity constraint whose aim is to 

find A and S both non-negative, so that
[15]

: 

 Y ≈ ÂŜ (5) 

Â and Ŝ are calculated by minimizing the follow-

ing cost function : 

 C(A, S) = ||Y − AS ||2   

s. t.    S ≥ 0,    A ≥ 0,     A1P = 1P 

(6) 

where ||. ||2 is the Frobenius norm. 

Solving equation (6) can be done using Alternating 

Least Squares (ALS) methods
[24]

. They are iterative 

methods which consist in updating the endmember ma-

trix using a non-negative least square method with a 

fixed abundance matrix. Then fixing the endmember 

matrix to update the abundance matrix. Repeating these 

two steps until convergence. The ALS algorithm is 

summarized in Algorithm 1. 

 

Algorithm 1 ALS - NMF 

 

/* Initialization */ 

𝑙 ← 1 

A(𝑙) ≥ 0  

S(𝑙) ≥ 0  

/* Iterate until convergence */ 

while 𝐶(A(𝑙), S(𝑙)) has not converged do 

 A(𝑙+1) ← minA≥0 𝐶(A, S(𝑙)) 

 S(𝑙+1) ← minS≥0 𝐶(A(𝑙+1), S) 

 𝑙 ← 𝑙 + 1 

end while 

Output: A(𝑙), S(𝑙) 

 

2.3 NMF limitations in presence of rare 

endmembers 

NMF method relies on the assumption that the total 

number of endmembers N is known due to prior 

knowledge or has been estimated using, for example, 

signal subspace identification methods
[25,26]

. Due to their 

rarity, the rare endmembers contribute weakly to the 

Frobenius norm in equation (6) as compared to the noise 

contribution. This contribution is weak enough such as 

decomposing the observed vector pixels onto 𝑁𝑑 domi-

nant endmembers using NMF algorithm provides an ac-

curate estimation of the dominant endmembers
[27]

. Let 

S𝑑  denotes the dominant endmembers matrix and 

A𝑑 be the corresponding abundance matrix. The estima-

tion of those two matrices is done by minimizing the 

following expression: 

 C(Ad, Sd) =  ||Y − AdSd ||2   

s. t.       ∑ apj = 1

Nd 

j=1

    ∀p 
(7) 

where Y is 𝑃 × 𝐿  matrix in which each row repre-

sents a pixel vector. 

3. Proposed method for rare pixels 

detection 

In this section we assume that an accurate estima-

tion of the dominant endmembers Ŝ𝑑 and their abun-

dances Â𝑑  are available. Such estimation can be ob-

tained using NMF as described above in section II.C. 

3.1 Reconstruction error from dominant 

endmembers 

From the dominant endmembers estimation we can 

reconstruct a hyperspectral data set Ŷ𝑑  such as Ŷ𝑑 =

 Â𝑑Ŝ𝑑 . By computing the row-wise, i.e. a pixel-wise, 

quadratic error between Y and Ŷ𝑑 we can assess the per 

pixel reconstruction goodness. The quadratic error 

𝑟𝑝 between a reconstructed pixel and its observed coun-

terpart can be expressed as: 

 rp = ||np + apS − âpdŜd||2  (8) 

where Ŝ𝑑  is the estimated dominant endmember 

matrix and â𝑝𝑑  the estimated corresponding abundance 

vector. The reconstruction error 𝑟𝑝 can be expressed as: 

 rp = ||ep + np||2 (9) 

where e𝑝 = a𝑝S − âpdŜ𝑑 is the estimation error. 

When the pixel 𝑝 contains dominant endmembers 

only, the estimation error is small, the reconstruction 

error e𝑝 is in general negligible when compared to the 

noise contribution, then the reconstruction error can be 

approximated by 𝑟𝑝 ≈ ||n𝑝||2. 

However, for the pixels containing rare endmem-

bers, the estimation of dominant endmembers cannot 

represent those rare endmembers contribution. Then the 

reconstruction error is generally larger than the sole noise 

contribution 𝑟𝑝 ≫  ||n𝑝||2.  

This pixel containing noticeable rare endmembers 

will have a larger reconstruction error than those con-

taining only dominant endmembers for which the recon-

struction error is the sole noise contribution. Thus we can 

separate the pixels containing rare endmembers from the 

ones containing only dominant endmembers by defining 

a threshold value on this reconstruction error. 
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In the next section new method to estimate a 

threshold value is proposed and, following that, a method 

to identify and localize rare pixels is discussed. 

3.2 Rare pixels identification using proposed 

thresholding criterion 

In a previous work an empirical threshold to detect 

rare pixels is used
[27]

. In
[27]

 we have shown that this 

threshold value is very sensitive to the level of the abun-

dance values of the rare endmembers, consequently the 

efficiency of the unmixing is diminished. In order to 

overcome this drawback, in this paper we propose a 

method to estimate an optimal threshold value. 

If we assume that the noise is a white gaussian vec-

tor n𝑝 ∼ 𝒩(0, 𝜎2I) , then the norm of the noise vector 

follows a chi-squared distribution with 𝐿 − 1 degrees of 

freedom: 

 ||np||2  ∼  σ2 χL−1
2     (10) 

where 𝐿 is the number of spectral bands. 

In hyperspectral imaging the number of 

tral bands is large enough to approximate the chi-squared 

distribution with the normal distribution, such as: 

 ||np||2 ∼ 𝒩(σ2,
2σ4

L
) (11) 

Then the norm of the noise vector depends only on 

the number of band 𝐿 and on the noise variance 𝜎2. 

According to the gaussian distribution properties 

less than 0.3% of the noise vectors will have a quadratic 

norm greater than the distribution mean plus three times 

their variance. So we set the threshold criterion τ to : 

 
τ =  σ2 + 3  √

2σ4

L
  (12) 

This threshold will exclude more than 99.7% of the 

dominant pixels. 

On the other hand there exist numerous methods to 

estimate the Signal-to-Noise Ratio (SNR) 
[26, 28]

 of a hy-

perspectral image and the SNR formula is given by: 

 

SNR = 10 log10
||𝐀𝐒||𝟐

||𝐍||2 = 10 log10
||𝐀𝐒||𝟐

𝐿𝑃𝜎2       (13) 

 

Thus we can use SNR estimation method to esti-

mate 𝜎2: 

𝜎̂2 =
1

𝐿𝑃
||𝐀𝐒||𝟐 10−

SNR

10                    (14) 

and set the threshold value using the equation (12). 

If the reconstruction error 𝑟𝑝 is superior to the threshold 

value τ  then the considered pixel must contain rare 

endmembers which are not unmixed yet. In the following 

section a method to unmix those rare endmembers is 

proposed. 

4. Proposed method to unmix rare 

endmembers 

4.1 Overview of bootstrap resampling for 

hyperspectral unmixing 

Bootstrap is a statistical inference method, it was 

initially used to estimate statistical properties of a popu-

lation from a sample of this population. Nowadays it 

generally refers to the resampling method which consists 

in generating new samples from a single observation 

sample. 

Bootstrap resampling has been used in hyperspec-

tral image classification to solve the class imbalance 

problems
[29]

. In class imbalance problems some classes 

are overrepresented in the training set whereas other 

classes are underrepresented. The bootstrap resampling 

helps solving this issues by generating new training sets 

using no other data than the original set. In this case 

the bootstrap method consists in sampling each class 

uniformly and with replacement to obtain a new set 

where each classes are balanced. 

When unmixing hyperspectral images in presence 

of rare endmembers a similar imbalance issue occurs: 

most of the pixels are dominant pixels and very few of 

them are rare pixels containing rare endmembers. We 

propose to use bootstrap resampling to generate new 

pixels and solve this imbalance. 

Bootstrap resampling consists in generating, from 

the observed data set, a new sample data set with similar 

property. In this paper the bootstrap method is adapted to 

hyperspectral unmixing with a linear mixing model to 

generate a new pixel yj
∗. For this we randomly select 𝑞 

pixels from Y  and 𝑞  coefficients 𝑏1,𝑗 … 𝑏𝑞,𝑗  such as 

𝑏𝑖,𝑗 ≥ 0 and ∑ 𝑏𝑖,𝑗 = 1𝑖 . The new pixel is expressed as 

follow: 

 
yj

∗ = ∑ bi,jypi,j

q

i=1

 

s. t.   ∑ bi,j

q

i=1

= 1   and   bi,j ≥ 0 

(15) 

where the 𝑝𝑖,𝑗  are the indexes of the randomly 

drawn pixels. By introducing the equation (1) of the lin-

ear mixing model in the bootstrap equation (15) we ob-

tain the following expression: 

  
yj

∗ = ∑ (∑ bi,japi,jk

q

i=1

) sk

N

k

+ ∑ bi,jnpi,j

q

i=1

  (16) 
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Let  𝛼𝑘 =  ∑ 𝑏𝑖,𝑗
𝑞
𝑖=1 𝑎𝑝𝑖,𝑗𝑘    and   ñ𝑗 =

 ∑ 𝑏𝑖,𝑗
𝑞
𝑖=1 𝑛𝑝𝑖,𝑗

 ,   then : 

 
yj

∗ = ∑ αj,ksk +

N

k=1

ñj (17) 

As both the 𝑎𝑝𝑖,𝑗𝑘 and the 𝑏𝑖,𝑗  have a unitary sum, 

the sum of the 𝛼𝑘  is also equal to one. Moreover the 

term ñ𝑗 is a weighted sum of noise vectors and still a 

noise vector with a reduced variance. So the generated 

pixels follow the same mixing model as the observed 

pixels, with the same endmembers and a similar additive 

white gaussian noise of lower variance. Thus by gener-

ating 𝑃𝑏  bootstrap pixels we obtain a new data set Y∗ 

which can be expressed on a matricial form as:  

 Y∗ = BY 

s. t.      B ≥ 0,     B1N = 1N 
(18) 

where Y∗  contains the bootstrapped pixels,  B ∈

els, B ∈ ℝ𝑃𝑏×𝑃  is the randomly drawn bootstrap matrix 

subject to positivity and sum-to-one constraint and 1𝑁 

is a vector of 𝑁 ones. It has been shown that the number 

q of selected pixels gives better unmixing when 1 < q < 

N in general case 
[30]

. Applying the bootstrap equation 

(18) to the linear mixing model equation (3) leads to: 

 Y∗ = A∗S + Ñ (19) 

where S is the endmember matrix which is not 

modified by bootstrap, A∗ = BA is the resampled abun-

dance matrix and Ñ =  BN is the noise matrix. 

4.2 Estimation of rare endmembers 

In this section we present two ways to estimate rare 

endmembers from the pixels detected and localized in 

the HSI using the presented method in the precedent sec-

tion and the bootstrap resampling introduced in section 

IV. In the remainder of this section we assume that we 

have used the rare pixels detection threshold to partition 

the observed pixels Y into two submatrices: the domi-

nant pixels Y𝑑 from one side and the rare ones  Y𝑟  on 

the other side. 

4.2.1 Bootstrapping both dominant and rare 

pixels  

The two submatrices Y𝑑 and Y𝑟  can be seen as a 

classification of the observed pixels into two classes 

“dominant pixels” and “rare pixels”. By definition most 

of the pixels are dominant ones and very few are rare 

ones which is the reason why NMF cannot unmix rare 

endmembers. The key idea is to somehow make the rare 

pixels being not-rare. For this we use bootstrap 

resampling 
[21] 

method to generate a new image where 

the “old” rare endmembers are present in abundance.  

We generate a new image of 𝑃 bootstrap pixels. 

Each bootstrap pixel is generated as explained previously 

in section IV. To ensure that rare endmembers are 

not-rare in the bootstrap image we randomly select one 

pixel in each class, such as: 

 yj
∗ =  αjyd,j +  βjyr,j (20) 

where y𝑑,𝑗 is chosen randomly from Y𝑑 and y𝑟,𝑗  

is randomly selected from Y𝑟 . 𝛼𝑗 and 𝛽𝑗 are both posi-

tive and  𝛼𝑗 + 𝛽𝑗 = 1. 

As the number of rare pixels in Y𝑟  is very low 

compared to the number P of pixels in the image, we can 

assume that each rare pixel is present in many of the new 

pixels Y∗. Moreover as dominant endmembers are pre-

sent in a lot of the pixels, by selecting one pixel from Y𝑑 

in each bootstrap pixel we ensured that they are present 

in many of the pixels of Y∗. Thus both dominant and 

rare endmembers are present in the majority of pixels of 

Y∗ and we can use NMF to unmix them by minimizing 

the cost function: 

 C(A∗, S) = ||Y∗ − A∗S ||2 (21) 

By using the NMF method, an estimate of the 

endmember matrix Ŝ and the bootstrap abundance ma-

trix Â∗ are estimated. 

As the bootstrap abundance matrix Â∗  is not rel-

evant, the estimation of the abundance matrix corre-

sponding to the original image Y must be done. For this 

a non-negative least square method is used to solve: 

 Â =  min
A

||Y − AŜ||2 (22) 

And thus we obtain and estimate of the endmembers 

Ŝ and their abundances Â. The matrix  Ŝ contains both 

dominant and rare endmembers. In the remainder of this 

paper this method which consists in applying NMF to 

Bootstrapped Dominant and Rare pixels will be called 

NMF-BDR. 

4.2.2 Bootstrapping rare pixels only 

The NMF-BDR is inspired by what exists in hyper-

spectral image classification. It relies on an estimate of 

the dominant endmembers Ŝd to classify pixels between 

Y𝑑 and Y𝑟  and then estimate all the endmembers of the 

matrix S. 

In this section, we only consider the observed data 

in Y𝑟 . As the matrix Y𝑟  contains very few pixels, most 

of them are rare pixels or an outlying noise, it may not 

contain enough pixels to obtain accurate estimation of 

the rare endmembers with NMF 
[27]

. To deal with this 

issue we propose to use bootstrap resampling method to 
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increase the number of pixels. 

Let Y∗ be the matrix of the 𝑃𝑏  bootstrapped pixels 

upsampled from Y𝑟: 

 Y∗ = BYr (23) 

Where B is the bootstrap 𝑃𝑏 × 𝑃𝑟  matrix as pre-

sented in equation (18). The matrix Y∗ can be written as: 

 Y∗ = A∗Sr + Ñr (24) 

A∗ is an artificial abundance matrix corresponding 

to the bootstraped pixels, but the matrix S𝑟  still contains 

the expected rare endmembers. 

We will apply NMF method to Y∗ to minimize the 

cost function: 

 C(A∗, Sr) = ||Y∗ − A∗Sr ||2 

s. t.     Sr ≥ 0,      A∗ ≥ 0, A∗1Pr
=  1Pr

 
(25) 

We obtain Ã∗ and  S̃𝑟 . 

At this point, all the endmembers of the matrix Ŝ 

are estimated. Therefore the non-negative least square 

method is used such as: 

 Â =  min
A

||Y − AŜ||2 (26) 

The entire proposed method called NMF-BR is 

summarized in the following in algorithm 2. 

 

Algorithm 2  NMF-BR 

Input: Y, 𝑁, 𝑁𝑑 

/* Estimate dominant endmembers */ 

Â𝑑 , Ŝ𝑑 ← NMF(Y, 𝑁𝑑) 

/* Detect rare pixels */ 

𝜎̂2 ← estimateNoiseVariance(Y, 𝑁𝑑)  

𝜏 ←  𝜎2 + 3√
2𝜎4

𝐿
   /* Estimate the threshold value 

*/ 

𝑟𝑝 = ||y𝑝 − â𝑝𝑑Ŝ𝑑||2  

Yr ← {yp| 𝑟𝑝 ≥ 𝜏}     /* Thresholding */ 

/* Estimate rare endmembers */ 

Y∗ ← bootstrap(Y𝑟)    /* Using equation (23) */ 

Â∗, Ŝ𝑟 ← NMF(Y∗, 𝑁𝑟)  

Â ← minA ||Y − AŜ||2  

Output: Â, Ŝ 

 

5. Experiments and results 

5.1 Performance of the proposed threshold 

value 

This section compares the empirical threshold
[27]

 

and the proposed threshold criterion equation (12). We 

define the detection rate as the ratio between the number 

𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  of rare pixels detected and the number 𝑛𝑟𝑎𝑟𝑒 

of rare pixels: 

 D =
ndetected

nrare
 (27) 

The simulated HSI contains 𝑃 = 500 pixels and 

𝐿 =  160 spectral bands. Pixels are obtained by a linear 

mixing model with 𝑁𝑑  =  5  dominants endmembers 

and one rare endmembers. n𝑟𝑎𝑟𝑒  =  3 rare mixed pixels 

are generated by mixing the rare endmember with 2 ran-

domly chosen dominant endmembers according to the 

model equation (1). A gaussian noise is added to the im-

age to get an expected SNR varying from 16 to 36db. For 

each value of SNR the detection rate D is evaluated over 

multiple simulated data, the averaged results are shown 

in Figure 1.  

 
 

We can see that the proposed criterion has almost always 

a better detection rate. 

Figure 1. Comparison of detection rate D obtained with 

different methods for different values of the input SNR. 

Figure 2 shows the comparison of ROC curves ob-

tained by the proposed threshold and the empirical 

threshold with SNR = 25db, when adapted for different 

false alarm rate. It is obvious that the probability of de-

tection values of target detection with the proposed 

method is improved significantly when compared to the 

empirical threshold method. 

In the considered application missing some rare 

pixels may cause the loss of important information this 

why we pretend that the proposed threshold criterion 

is better suited than the previous one
[27]

. 
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Figure 2. ROC curves obtained by the proposed threshold 

and the empirical threshold for SNR = 25db. 

5.2 Evaluation of the proposed unmixing 

method on simulated data 

This section presents results obtained on simulated 

hyperspectral images. We generated hyperspectral imag-

es of 1600 pixels which contain 𝑁 =  7 endmembers of 

𝐿 =  160 spectral bands from the real-data bank USGS 

spectral lib
[31]

. The mixing matrix is randomly generated 

such as two endmembers are present respectively in 16 

pixels only (1%) and 9 pixels only (0.6%) and then 

can be considered as rare endmembers, we will label 

those endmembers s1 and s2. Therefore there are 

𝑁𝑑  =  5 dominant endmembers, labelled s3 to s7. A 

white gaussian noise is added to get a SNR ranging from 

24 to 30db. The experiments are run 100 times on dif-

ferent simulated hyperspectral images.  

An example of simulated hyperspectral image of size 

40x40 pixels is presented in Figure 3. The two rare endmem-

bers are present respectively in four targets with size 2x2 pixels 

and one target with size 3x3 pixels, their abundance map can be 

shown in Figure 3b. 

 

(a) Endmembers used in simulated HSI. Spectra s1 and s2 

(dotted lines) are the rare endmembers. Spectra s3 to s7 are the 

dominant endmembers. 

 

 

(b) Abundance maps of rare endmembers: ground truth. Above 

the abundance map of rare endmember s1. Below the one of 

rare endmember s2. 

Figure 3. Simulated HSI 

 

 

(a) Estimated endmembers with NMF method. Spectra s1 and 

s2 (dotted lines) are the estimated rare endmembers. Spectra s3 

to s7 are the estimated dominant endmembers. 

 

 

 

(b) Abundance maps of estimated rare endmembers. Above the 

abundance map of estimated rare endmember s1. Below the 

one of rare endmember s2. 

Figure 4. Estimation of endmembers and abundance maps with 
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NMF and N= 7. 

We use a NMF method to decompose the test set 

onto 7 endmembers. The estimated endmembers are 

shown in Figure 4. We also applied the proposed method 

NMF-BR onto the same test set. The results for the proposed 

method NMF-BR are presented in Figure 5. 

 

 

(a)  Estimated endmembers with NMF-BR method. Spectra s1 

and s2 (dotted lines) are the estimated rare endmembers. Spec-

tra s3 to s7 are the estimated dominant endmembers. 

 

 
 

 

(b) Abundance maps of estimated rare endmembers. Above the 

abundance map of estimated rare endmember s1. Below the 

one of rare endmember s2. 

Figure 5. Estimation of endmembers and abundance maps with 

NMF-BR method 

We compare the results obtained with NMF, 

NMF-BDR and NMF-BR. The endmembers estimation 

accuracy is assessed with mean spectral angle distance 

(MSAD): 

 
MSAD =

1

N
∑ cos−1 (

sk
Tŝk

||sk||||ŝk||
)

N

k=1

 (28) 

The MSAD computes the mean angle between the 

estimated endmembers and the reference endmembers, 

the lower angle the better. Results are presented in Table 

1. 

 

SNR (db) 24 26 28 30 

NMF 0.2656 0.2365 0.2239 0.2033 

NMF-BDR 0.2082 0.1961 0.1859 0.1805 

NMF-BR 0.1958 0.1808 0.1762 0.1645 

Table 1. MSAD comparison of NMF, NMF-BDR 

and NMF-BR methods. 

The abundance estimation is assessed using the 

normalized abundance mean square error (NMSE): 

 NMSE =
||A − Â||2

||A||2
 (29) 

The results are given in Table 2. 

SNR (db) 24 26 28 30 

NMF 0.0194 0.0195 0.0195 0.0193 

NMF-BDR 0.0183 0.0186 0.0184 0.0178 

NMF-BR 0.0178 0.0178 0.0177 0.0181 

Table 2. NMSE comparison of NMF, NMF-BDR and 

NMF-BR methods. 

Both the rare endmembers and their abundances are 

accurately estimated by the proposed NMF-BR whereas 

a classical NMF fails to estimate those rare endmembers. 

The proposed method NMF-BR is better suited than the 

NMF and NMF-BDR when small targets or anomalies 

are present in the hyperspectral image. 

5.3 Experiments with real world data 

The proposed method is now applied to real world 

data. We use an image from the HYperspectral Digital 

Imagery Collection Experiment (HYDICE) of size 

100x150 pixels and 210 spectral bands
[33]

. The image 

data were acquired sponsored by the Naval Research 

Laboratory, by the airborne HYDICE sensor in August 

1995 from a flight altitude of 3000m with the ground 

sampling distance approximately 1.5 m. It has 210 spec-

tral channels ranging from 400nm to 2500nm with spec-

tral resolution 10 nm. After removing low SNR bands 

1-3, 202-210 and water vapor absorption bands 101-112, 

137-153, there is 169 spectral bands remaining
[34]

. The 

scene is centred to a large grass field bordered by a road 

on the right side and a forest in the left side. The field 

contains 15 small size targets to be identified, organized 

in a 5x3 grid where each row is of a different materials 
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and each column a different target sizes: 3mx3m, 2mx2m 

and 1mx1m. Figure 6 shows the scene and Figure 7 

corresponds to the targets ground truth. 

 
 

Figure 6. Real World HYDICE HSI. 

 

 
 

Figure 7.Target locations in the scene. 

 

We use the proposed threshold criterion to detect 

pixels containing rare endmembers. In the HSI there are 

3 dominant endmembers, corresponding respectively to 

the trees, the grass and the road. Using SNR estimation 

method
[26]

 the estimated SNR is 30db. The detected pix-

els are shown in Figure 8. Detected pixels correspond 

mainly to the targets, the edges of the road and some dirt 

near the forest. 

 

 
(a) 

                                                                                                          

 
(b) 

Figure 8. Detection using : (a) empirical threshold and (b) 

proposed threshold criterion. 

We have applied the presented methods to unmix 

the hyperspectral images with N = 8 endmembers where 

𝑁𝑑  = 3 endmembers are considered dominant (grass, 

trees, road) and the other 5 endmembers are the rare ones 

corresponding to target materials (panels). They are la-

belled from t1 for the top panels row, to t5 for the bottom 

panels row. By averaging the pixels of each target and 

the pixels of grass, trees and road we estimate their 

ground truth endmembers. The estimated ground truth 

endmembers are shown in Figure 9. 

 

 

Figure 9. The height ground truth endmembers of the 

original HSI. 

We compute the MSAD between the estimated 

endmembers and the ground truth endmembers, numeri-

cal results are shown in Table III. From these values we 

can see that the NMF-BR gives better result than the 

classical NMF and NMF-BDR. 

 NMF NMF-BDR NMF-BR 

MSAD 0.5179 0.4184 0.2715 

Table 3. MSAD comparison of NMF, NMF-BDR 
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and NMF-BR on HYDICE image. 

 

The abundance map estimated by NMF-BR is pre-

sented in Figure 10 where the classes numbered 1-3 

represent respectively the grass, the road and the trees 

and classes 4 to 8 represent the targets. Each pixel 

has been labelled with the most abundant class. Almost 

all the targets are detected and localized in the scene. 

Figure 10 shows also that some pixels are incorrectly 

labelled near the road (orange) and in the forest (yellow), 

the main reason is in those areas the endmembers are 

subject to the variations due to the different shadowing, 

which is the main reason why the abundances estimat-

ed by NMF method are not correct. 

                      

(a) 

                                                                             

 
(b) 

Figure 10. Abundance map with: (a) NMF method and (b) 

NMF-BR method. Labels 1, 2 and 3 are respectively the grass, 

the road and the forest. Labels 4, 5, 6, 7 and 8 are the targets, 

respectively t1, t2, t5, t4, t3. 

6. Conclusion 

The performances of NMF, NMF-BDR and 

NMF-BR in improving the estimation of endmembers 

from the linearly mixed pixels of a HSI are discussed in 

this paper. NMF performs well when the endmembers 

are present in dominant pixels, it might also miss the rare 

endmembers. The main explanation is that NMF estimate 

all the endmembers at once by minimizing the overall 

reconstruction error. 

In this paper we proposed a new thresholding 

method to detect rare pixels. This method relies on an 

accurate estimation of the dominant endmembers by 

NMF and proposes a threshold criterion on reconstruc-

tion error which depends on SNR to detect rare pixels 

whose reconstruction error cannot be explained by the 

sole noise contribution. 

We also proposed two new unmixing methods 

NMF-BDR and NMF-BR to obtain both dominant and 

rare endmembers. Those methods are based on NMF 

and bootstrap resampling. The proposed threshold crite-

rion is used with different bootstrap strategies to increase 

artificially the abundances of the rare pixels which lead 

to estimate efficiently the rare endmembers. The 

NMF-BR method reduces the MSAD up to 50% com-

pared to the NMF method. 

The results on simulated and real world data have 

shown that the proposed NMF-BR method improves the 

standard Non-negative Matrix Factorization when the 

HSI contains rare endmembers, especially, when the tar-

gets are with small sizes. The performances of the 

NMF-BR are highlighted by measures of MSAD and 

MSE. 
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