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Abstract: The purpose of this paper is to develop real-world modeling for interest rate volatility with a humped term 

structure. We consider humped volatility that can be parametrically characterized such that the Hull–White model is a 

special case. First, we analytically show estimation of the market price of risk with humped volatility. Then, using U.S. 

treasury yield data, we examine volatility fitting and estimate the market price of risk using the Heath–Jarrow–

Morton model, Hull–White model, and humped volatility model. Comparison of the numerical results shows that the 

real-world humped volatility model is adequately developed.   
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1. Introduction

Interest rate models have been used for option pricing under a risk-neutral measure, and financial institutions are

increasingly interested in applying it for assessment of interest rate risk. For this purpose, the interest rate model 

should be used under the real-world measure. Such a model is called a real-world model.  

To construct the real-world measure, it is necessary to estimate the market price of risk. In econometrics, the mar-

ket price of risk has been estimated for short-rate models, such as in Dempster et al.
[4]

 and Stanton
[15]

. In risk manage-

ment, there are two main approaches to constructing the real-world measure: the so-called forward-looking and back-

ward-looking approaches. Forward-looking approaches infer the real-world measure from market prices, such as option 

prices in Ross
[14]

 (cf. Hull et al.
[8]

).  

Backward-looking approaches estimate the market price of risk from the historical behavior of forward rates. This 

approach was used in Norman
[13]

, where it was numerically estimated in the BGM model
[3]

.Yasuoka
[17,18,20]

 introduced a 

theoretical framework for real-world modeling in the LIBOR market model
[9]

, the Heath–Jarrow–Morton (HJM) 

model
[5]

, and the Hull–White model
[7]

, respectively. Since the backward-looking approach is consistent with traditional 

methods of market risk management, practitioners find it simple to adopt. For example, van der Vlies
[16]

 studies the 

evaluation of mortgage prepayment risk using the framework of [18].  

The LIBOR market model is well-known as a standard model for derivatives pricing because of its practicality and 

positive interest rates. However, negative interest rates have been observed in some countries for a number of years. For 

such situations, the HJM model is practical as a scenario generator of interest rates. In particular, the Hull–White mod-

el, a special case of the HJM model, admits a mean reversion structure of volatility. The one-dimensional Hull–White 

model has been successfully applied to risk-management in practice and is of use in theoretical study.  
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Because the Hull–White model admits a parametric volatility, it is convenient to estimate the market price of risk 

in this model, as shown in [20]. Taking advantage of this convenience, the correlation between the market price of risk 

and yields is studied in Yasuoka
[19] 

for the Hull–White model under the real-world measure. Parametric volatility, as in 

the Hull–White model, is preferred in risk management because of its robustness. For example, in counterpar-

ty-credit-risk management, the potential future exposure of interest rate swaps can be evaluated by using the Hull–

White model, as in [21].  

However, the term structures of volatilities do not always satisfy mean reversion: the structure is sometimes a 

humped shape. See Kahn
[10]

 and Heath et al.
[6]

 for examples. Given the above circumstances, this paper aims to develop 

a real-world model with humped volatility, treating Hull–White volatility as a special case of humped volatility. There 

are various expressions of humped volatility, such as those in Agca
[1]

, Mercurio and Moraleda
[11]

, and Moraleda and 

Vorst
[12]

. Here, we adopt the mathematical representation used in [1].  

Section 2 shows the estimation of the market price of risk in a humped volatility model. The argument used for this 

follows that in [20], where the real-world Hull–White model is constructed. Section 3 fits the volatility and estimates 

the market price of risk in the HJM model, Hull–White model, and humped volatility model, using U.S. treasury yield 

data. We examine the performance of volatility fitting and the estimation of the market price of risk by comparing re-

sults from these models.  

2. Real-world model with humped volatility 

This section briefly introduces real-world modeling with the Gaussian HJM model and develops this for the case of 

humped volatility. The argument basically follows that of [18,20].  

2.1 The Gaussian HJM model 

We denote by f(t, T) the instantaneous forward rate (hereinafter, the forward rate) at time t < T for maturity T. 

The instantaneous spot rate r is given by r(t) = f(t, t). We denote by σ(t, T) a d-dimensional volatility of f(t, T), 

and we set υ(t, T) = − ∫ σ
T

t
(t, u)du. Let Wt be a d-dimensional Brownian motion under a real-world measure P 

and φ = (φ1, … , φd)T be the market price of risk, where the superscript T denotes transposition.  

The dynamics of f(t, T) is represented in the HJM model by  

df(t, T) = *−σ(t, T) ⋅ υ(t, T) + σ(t, T) ⋅ φ(t)+dt + σ(t, T) ⋅ dWt,                            (2.1) 

where ⋅ denotes the inner product in Rd. When the volatility σ(t, T) is deterministic, the HJM model is called Gauss-

ian. In this paper, we always work with the Gaussian HJM model, and further assume that σ(t, T) is continuous in t 

and T. The state price deflator is a stochastic process satisfying  

dξt/ξt = −r(t)dt − φ(t) ⋅ dWt. 

Using this, the no-arbitrage price is calculated under P as follows. Let CT be the payoff at time T of some security. 

The no-arbitrage price of this option at time t < T is given by  
1

ξt

Et,ξTCT-, 

where Et,⋅- denotes the conditional expectation at t under P. For a small time step Δt > 0, f(Δs, T) is represent-

ed by  

f(Δs, T) = f(0, T) + *−σ(0, T)υ(0, T) + σ(0, T)φ(0)+Δs + √Δsσ(0, T)W1,                           (2.2) 

from the Euler integral, where W1 = ∫ d
1

0
Ws. Naturally, we may identify W1 with a d-dimensional standard normal 

distribution. This discrete expression is used for the estimation of the market price of risk and for the Monte-Carlo sim-

ulation of f(Δs, Ti) with i = 1, … , n.   

Volatility and principal component analysis  

We denote by x = T − t the length of time from t until T. Let x1, … , xn be a sequence such that xi = δi for 

0 ≤ i ≤ n. Let Δt > 0 be fixed, and let *tk+k=1,…,J+1 be a sequence of observation times, with t1 = 0 and tk+1 =

tk + Δt, where J + 1 is the number of observations. In practice, we observe the forward rate F(tk, xi) with a fixed 

time length xi such that F(tk, xi) = f(tk, tk + xi). We define the change of F, keeping the maturity date tk + xi, such 

that  
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ΔFi(tk) = F(tk+1, xi − Δt) − F(tk, xi). 

Principal component analysis of the dataset *ΔFi(tk)+i,k gives the lth eigenvalue ρl
2 and the lth principal component 

el = (e1
l , … , en

l ) for l = 1,2, …. We assume without loss of generality that all eigenvectors are chosen such that e1
l > 0 

and ρl > 0. We assume that σ(t, T) satisfies σl(0, xi) = ρlei
l. For simplicity of notation, we abbreviate σ(0, xi) and 

υ(0, xi) to σ0i and υ0i, respectively, for i = 1, … n.   

Market price of risk in the Gaussian HJM model  

Assuming that the market price of risk is constant during the sample period, the lth market price of risk φl is es-

timated by [18] such that    

φl =
1

ρ
∑ *n

i=1 EH 0
ΔFi

Δt
1 + σ0iυ0i+ei

l,                                               (2.3) 

where EH[ ] denotes the sample mean. This solution is the maximum likelihood estimate, as shown in [20]. Mon-

te-Carlo simulation of interest rates under P is referred to as real-world simulation. For numerically performing re-

al-world simulation, we define the rolled trend of F(⋅, xi) as EH 0
ΔFi

Δt
1, and the lth rolled trend score Rl as  

Rl = ∑ EHn
i=1 0

ΔFi

Δt
1 ei

l.                                                      (2.4) 

The rolled trend represents the averaged change of the forward rate, reflecting the rolling effect, and 𝑅𝑙 measures the 

change of the forward rate curve with respect to 𝑒𝑙. For details, see [18] or [20].  

Equation (2.3) is represented as  

                        φl =
1

ρl
{Rl + ∑ σ0i

n

i=1

υ0iei
l}. 

                                                                                        (2.5) 

Property of real-world simulation 

Once we obtain the value of 𝜑, the real-world simulation can be performed from (2.2) by using  

f(Δs, xi) = f(0, xi) + *−σ0iυ0i + σ0iφ+Δs + √Δsσ0iW1                           (2.6) 

with time step Δ𝑠 and each 𝑖. Since |𝜎0𝑖𝜐0𝑖| experimentally takes a small value, the drift term of the above is roughly 

dominated by the value of 𝜑. For instance, when the market price of risk takes a large positive (resp., negative) value, 

then the real-world model predicts rising (resp., falling) interest rates.   

Mean-price property 

Let us consider a period A= ,0, 𝑇- and divide this into two subperiods 𝐵1 = ,0, 𝑇/2- and 𝐵2 = ,𝑇/2, 𝑇-. We 

denote by 𝜑𝐴, 𝜑𝐵1, and 𝜑𝐵2 the market price of risk in periods 𝐴, 𝐵1, and 𝐵2, respectively, and we denote the cor-

responding volatilities by 𝜎𝐴, 𝜎𝐵1, and 𝜎𝐵2, again respectively. Assuming constant volatility through the whole period 

𝐴, the following proposition holds. That this property, the “mean price property”, holds is proven in [20].  

Proposition 1.  We assume that 𝜎𝐴1 = 𝜎𝐵1 = 𝜎𝐵2 in the matrix sense of equality. Then, it follows that 

 

                                  𝜑𝐴 =
𝜑𝐵1+𝜑𝐵2

2
                                           (2.7) 

in the vector sense.  

This relation roughly holds for actual data. Indeed, when we estimate the market price of risk in practice, the market 

price of risk 𝜑𝐴 of the whole period takes a roughly intermediate value between 𝜑𝐵1 and 𝜑𝐵2. We shall see this fea-

ture in our numerical example.  

2.2 Humped volatility model 

For simplicity we assume that 𝜌𝑙 = 0 for 𝑙 ≥ 2, that is, that the historical dynamics of forward rates are driven by 

only the first volatility component. Where it will not cause confusion, we omit the superscript 𝑙 for the order in princi-

pal components in the following.  

There are various expressions of humped volatility ([1,11,12], etc.). In this paper, we work with the expression of 

volatility proposed in [1]:  

                     𝜎(𝑡, 𝑇) = 𝜎*𝛾(𝑇 − 𝑡) + 1+exp*−𝑘(𝑇 − 𝑡)+ ,                               (2.8) 

where 𝜎, 𝛾, and 𝑘 are non-negative constants. It is known that this function is humped with respect to 𝑇 − 𝑡 when 

𝛾 > 𝑘. Using this parametric representation, the real-world model can be built more specifically. In particular, when 
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𝛾 = 0,𝜎(𝑡, 𝑇) becomes  

 

𝜎(𝑡, 𝑇) = 𝜎exp*−𝑘(𝑇 − 𝑡)+ ,                                    (2.9) 

which is well known as the volatility of the Hull–White model in the HJM framework. Here, 𝑘 is referred to as the 

mean reversion rate. The real-world modeling in the Hull–White model is introduced in [20], where argument is similar 

to the following. For convenience, we call the volatility of (2.9) the Hull–White volatility. We approximate the first vol-

atility component 𝜌𝑒  with 𝜎, 𝛾 and 𝑘 chosen such that  

 

𝜌𝑒𝑖 ≈  𝜎(𝛾𝑥𝑖 + 1)exp (−𝑘𝑥𝑖).                                    (2.10)  

For this purpose, consider the least-squares problem  

 
∑ *𝑛

𝑖=1 𝜌𝑒𝑖 − 𝜎(𝛾𝑥𝑖 + 1)exp(−𝑘𝑥𝑖)+2                                  (2.11) 

under the restriction  

 

𝜌2 = 𝜎2 ∑ (𝛾𝑥𝑖 + 1)2 exp(−2𝑘𝑥𝑖).𝑛
𝑖=1                                   

(2.12) 

The condition (2.12) is referred to as the norm-invariant condition; it ensures that the implied humped volatility and the 

first volatility component have the same norm. Solving this yields 𝜎, 𝛾 and  𝑘. From these parameters, we set the 

volatility 𝜎0𝑖 such that  

𝜎0𝑖 = 𝜎(𝛾𝑥𝑖 + 1)exp (−𝑘𝑥𝑖); 𝑖 = 1, … , 𝑛.                                (2.13)  

The approximation error in (2.10) is measured as the ratio of squared difference between the approximation to the first 

volatility component on average, such that  

 

                        
*

1

𝑛
∑ *𝑖=1,…,𝑛 𝜌𝑒𝑖−𝜎(𝛾𝑥𝑖+1)exp(−𝑘𝑥𝑖)+2+1/2

1

𝑛
∑ 𝜌𝑒𝑖𝑖=1,…,𝑛

.                                  (2.14) 

Since the function (2.11) is not globally downward convex, these parameters may not be unique. Volatility fitting is a 

practical matter, so non-uniqueness is not a severe problem in this paper. In practice, the above approximation error 

might help to solve the least-squares problem.  

Next, we define an 𝑛 -dimensional vector, (�̃�1 , … , �̃�𝑛) by 

 

  �̃�𝑖 =  
𝜎

𝜌
(𝛾𝑥𝑖 + 1)exp(−𝑘𝑥𝑖);  𝑖 = 1, … , 𝑛.                                 (2.15) 

From (2.12), we see that ∑ (�̃�𝑖)2𝑛

𝑖=1
= 1. Hence, we may regard(�̃�1 , … , �̃�𝑛)𝑇 as the first principal component, rather 

than (𝑒1, … , 𝑒𝑛)𝑇. Equation (2.13) is represented by 

 

 𝜎0𝑖 = 𝜌�̃�𝑖;  𝑖 = 1, … 𝑛,                                                   (2.16) 

in which the humped volatility (𝜎01, … , 𝜎0𝑛)𝑇  is defined anew as the first volatility component. We may estimate the 

market price of risk by (2.3) for the case of d = 1.  

In the Hull–White model, the parameters  𝜎 and 𝑘 are determined in the same manner, letting 𝛾 = 0 in the 

above. For details, see [20]. The approximation error is similarly defined by (2.14), letting 𝛾 = 0.   

Real-world model with humped volatility  

From Agca
[1]

, we have that 

     𝑣(𝑡, 𝑇) = − ∫ 𝜎*1 + 𝛾(𝑢 − 𝑡)+exp*−𝑘(𝑢 − 𝑡)+𝑑𝑢
𝑇

𝑡
    

= −
𝜎𝛾

𝑘
0.

1

𝛾
+

1

𝑘
/ ,1 − exp*−𝑘(𝑇 − 𝑡)+- − (𝑇 − 𝑡)exp*−𝑘(𝑇 − 𝑡)+1. 

It follows that 

     𝑣0𝑖 = −
𝜎𝛾

𝑘
0.

1

𝛾
+

1

𝑘
/ *1 − exp(−𝑘𝑥𝑖)+ − 𝑥𝑖exp*−𝑘𝑥𝑖+1 .                         (2.17) 

From (2.13) and (2.17), we can numerically calculate ∑ 𝜎0𝑖
𝑛
𝑖=1 𝑣0𝑖�̃�𝑖. The market price of risk is estimated from (2.3).  

We finally present a form for real-world simulation. Set 𝑇𝑖 = 𝑥𝑖 for 𝑖 = 1, … , 𝑛; here, 𝑇𝑖  indicates the date and 
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𝑥𝑖 indicates the time length. Let 𝑓(0, 𝑇𝑖)  for  𝑖 = 1, . … 𝑛 be an initial forward rate. For a small time step Δ𝑠, we have  

 

𝑓(Δ𝑠, 𝑇𝑖) = 𝑓(0, 𝑇𝑖) + 𝜎0𝑖(−𝑣0𝑖 + 𝜑)Δ𝑠 + √Δ𝑠𝜎0𝑖𝑊1.                                 (2.18) 

3. Numerical examples 

3.1 Data and volatility fitting  

  

Figure 1. Forward rates in U.S. Treasury market, where the labels 1, 5, and 10 indicate the forward rate over the six-month pe-

riods beginning at 1, 5, and 10 years, respectively. Yield data were retrieved from [2]. 

We use U.S. Treasury yields from 10 January 2003 to 25 January 2013. Setting δ = 0.5 (years) and 𝑥𝑖 = δ𝑖 for 

i = 1,2, … ,20(n = 20), the 6-month forward rate is obtained for every four weeks in this period. Figure 1 shows a his-

torical chart of the implied forward rates. For our numerical examples, we split this sample period into two: period A is 

the first part, from 10 January 2003 to 4 January 2008, and period B is the last part, from 4 January 2008 to 25 January 

2013. Period C is defined as the whole period, from 10 January 2003 to 25 January 2013.  

Figure 2 shows the forward rate curves of the three dates that bound the periods. From this, we see a flattening of 

the forward rates in period A, bull-steepening in period B, and falling in period C. The first rolled trend score 𝑅  takes 

a small negative value for period A, and a larger negative value for periods B and C. From (2.5), we may expect that the 

value of the first market price of risk is negative in period A and strongly negative in periods B and C. For details of this 

qualitative estimation, see [20].  

  

Figure 2. Implied forward LIBOR curves at three days ( 10 January 2003, 4 January 2008, and 25 January 2013). 
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Figure 3. First volatility component with Hull–White volatility and humped volatility 

3.2 Volatility fitting 

For convenience, we regard the 6-month forward rate as the instantaneous forward rate in our numerical analysis. 

Setting Δ𝑡 = 28/365 (i.e., four weeks), we obtain the volatility components in the HJM model by principal compo-

nent analysis.  

In the following, the numerical examples for periods A, B, and C are referred to as Cases A, B, and C, respectively. 

The first volatility components are approximated by the Hull–White volatility and by the humped volatility as explained 

in Section 2.2. Table 1 lists the volatility parameters and approximation error for Cases A, B, and C. In the table, “con-

tribution rate” indicates the contribution rate of the first principal component. We see that the first volatility component 

explains more than 70% of the covariance for all cases. Figure 3 compares the volatilities of the three cases.  

The first volatility component is marked with a dotted curve in Figure 3. From this, the term structure of volatility 

admits a humped shape in Case A. In Case B, the volatility component is upward convex, rising to the right. Since pe-

riod C is the direct sum of periods A and B, the volatility structure shows an intermediate shape between that of Case A 

and that of Case B. It is difficult to approximate these term structures when using Hull–White volatility since the Hull–

White volatility is downward convex.  

In the humped volatility model, the approximation error is in the range 0.069–0.088 for all cases, which shows that 

the humped volatility works well for all cases. In the Hull–White model, the mean reversion rate k is negative in Cases 

B and C since the first volatility component roughly rises to the right. The approximation error is in the range 0.174–
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0.195 for three cases, which is obviously worse than the error when using humped volatility. Therefore, humped vola-

tility approximates the first volatility component better than Hull–White volatility does for our sample. These features 

are visually verified in Figure 3 for all cases.  

 

 Case 

A B C 

Start day 10/1/2003 4/1/2008 10/1/2003 

End day 4/1/2008 25/1/2013 25/1/2013 

Contribution rate 0.823 0.725 0.738 

 

          Humped volatility 

𝐤 0.249 0.141 0.177 

𝛔 0.0043 0.0001 0.0021 

𝛌 1.397 40.0 2.50 

Error 0.088 0.073 0.069 

 

          Hull–White volatility 

𝒌 0.0337 -0.073 -0.0320 

𝝈 0.0102 0.0075 0.0084 

Error 0.174 0.195 0.174 

Table 1. Volatility parameters of three cases. 

3.3 Estimation of the market price of risk  

In the Gaussian HJM model, the market price of risk is estimated for each case by (2.5), using an 

eight-dimensional model. In the humped volatility model and the Hull–White model, the market price of risk is esti-

mated by the method described in Section 2.2.  

Table 2 compares the market price of risk among the three volatility structures for each case, where “HJM” means 

the first market price of risk as estimated by the eight-dimensional HJM model, and the values in parentheses represent 

the difference of the market price of risk from “HJM” in percentage. The market price of risk in “HJM” is −0.392 in 

Case A and −0.701 in Case B. Section 3.1 suggests that the market price of risk should be negative and larger in Case 

B than in Case A. The market price of risk is −0.594 in Case C, which is almost an intermediate value between Cases 

A and B. This is roughly explained by the mean price property, introduced in Section 2.1.  

In both the humped volatility model and the Hull–White model, the market price of risk is close to the value of 

“HJM”. The difference is less than about 1% in all cases. Consequently, there is no remarkable difference in the estima-

tion of the market price of risk among volatility structures. We see that the market price of risk is adequately estimated 

in the humped volatility model.  

 

Case HJM Humped volatility Hull-White 

A -0.392 -0.395  (0.83 ) -0.389   (-0.76) 

B -0.701 -0.697  (-0.57) -0.710   (1.30) 

C -0.594 -0.591  (-0.45) -0.591   (-0.35) 

Table 2. Market price of risk in three cases.  

“HJM” indicates the first market price of risk as estimated by the eight-dimensional HJM model, and numbers in 

parentheses are the percent difference from “HJM”. 

4. Conclusion 

Here, we presented a practical method for real-world modeling of humped volatility. This model is a generalization 

of the real-world Hull–White model. Next, we showed numerical examples using U.S. treasury yields from 2003 to 

2013. In this period, the term structure of the first volatility component was humped or upward convex. The humped 

volatility model showed better performance than the Hull–White model on volatility.  
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The first market price of risk was estimated by using the first volatility component in the Gaussian HJM model, the 

humped volatility, and the Hull–White volatility. Comparing these values among three volatility structures, there were 

only small differences. Consequently, we see that the market price of risk is reasonably estimated in the humped volatil-

ity model. And the real-world humped volatility model has been practically introduced.   
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