Mesoscale Computational Prediction of Lightweight, Thermally Conductive Polymer Nanocomposites Containing Graphene-Wrapped Hollow Particle Fillers

Zhong-Hui Shen¹, Wen-Ying Zhou², Yang Shen¹, Ce-Wen Nan¹, Qing Wang³, Long-Qing Chen¹
¹ Tsinghua University, Beijing, China
² Xi’an University of Science & Technology, Xi’an, China
³ The Pennsylvania State University, USA

Abstract: Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.

Keywords: Thermal Conductivity, Polymer Nanocomposites, Materials Design, Graphene-Wrapped Hollow Nanoparticles

1. Introduction

The effective thermal management in applications such as LED (light emitting diode) lighting, batteries, automobile cooling systems, and high-power density microelectronic devices, where heat accumulation can have deleterious effects, is critically important to ensure the device performance and reliability, and therefore to enhance the lifetime and accuracy of the system[1-3]. With further miniaturization, integration and functionalization of microelectronics and the emerging applications such as electronic assembly and packaging, and solar, etc., the thermal dissipation has become a challenge[4-6]. Addressing this challenge requires the development of novel materials with enhanced thermal conductivity as well as light weight, low cost, good processability, and corrosion resistance. Polymers have many of these characteristics, but they generally have very low thermal conductivity (0.1-0.4 Wm⁻¹K⁻¹)[7,8]. Therefore, heat conductive fillers such as carbon nanotube[9-13] (>2000 Wm⁻¹K⁻¹), graphene[14-18] (~5000 Wm⁻¹K⁻¹), aluminum oxide[19-23] (>20 Wm⁻¹K⁻¹), boron nitride[22-26] (~350 Wm⁻¹K⁻¹), and metal particles[27-31] (>100 Wm⁻¹K⁻¹), etc., are traditionally added into polymers to enhance their thermal conductivity while preserving the above-mentioned advantages of polymers.

The influences of the filler type, size, shape, alignment, and loading level on the effective thermal conductivity of the resulted polymer composites have been extensively investigated, see e.g., the recent reviews[5,12,32]. It was generally accepted that a high filler loading level
(≥30 % in volume) is necessary in order to achieve the appropriate level (≥ 1 Wm⁻¹K⁻¹) of thermal conductivity in a polymer nanocomposite. For example, heat sinks in microelectronic systems require polymer nanocomposites with a thermal conductivity approximately from 1 to 30 Wm⁻¹K⁻¹[33], which normally needs a filler loading level higher than 30% in volume[7]. The high loading level of the filler, particularly for metallic fillers, usually significantly increases the mass density and costs, and weakens the mechanical performances such as tensile strength and flexibility, and processibility, which prevents the polymer composites from being used commercially, in particular in aerospace where a lightweight is extremely desired[32,34]. Therefore, it is imperative to seek for alternative approaches to developing novel material microstructures with enhanced thermal conductivity but low density and costs.

To effectively reduce the weight and improve the specific thermal conductivity of filled polymers. In this work, we propose to fill the polymer matrix with hollow nanoparticles to increase the thermal conductivity while preserving a low mass density of the nanocomposite. In particular, we computed the effective thermal conductivity (κ_eff) and the effective mass density (ρ_eff) of the poly-}

2. Results and discussions

Figure 1a-Figure 1d show the microstructures of PE nanocomposites filled with 20 vol.% and 40 vol.% solid nanoparticles, 20 vol.% and 40 vol.% hollow nanoparticles, respectively, computationally generated assuming random distributions of the filler nanoparticles. For hollow nanoparticles, the thickness of the filler layer is about 4%-7% of the radius of the nanoparticles. The effective thermal conductivity for the polymer nanocomposite is calculated by solving the steady-state heat conduction equation using the phase-field spectral iterative perturbation method[35-37]. The intrinsic thermal conductivities and mass densities of the filler materials, polyethylene (PE) polymer, and air used in the computation are listed in Table 1.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Thermal Conductivity (Wm⁻¹K⁻¹)</th>
<th>Mass Density (kg/m³)</th>
<th>Literature Values (Wm⁻¹K⁻¹)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>417</td>
<td>10490</td>
<td>427</td>
<td>31</td>
</tr>
<tr>
<td>Al</td>
<td>237</td>
<td>2700</td>
<td>247</td>
<td>28</td>
</tr>
<tr>
<td>Fe</td>
<td>40</td>
<td>7900</td>
<td>67</td>
<td>38</td>
</tr>
<tr>
<td>Cu</td>
<td>397</td>
<td>8900</td>
<td>398</td>
<td>28</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33</td>
<td>3700</td>
<td>30-36</td>
<td>39</td>
</tr>
<tr>
<td>AlN</td>
<td>300</td>
<td>3260</td>
<td>100-300</td>
<td>5</td>
</tr>
<tr>
<td>BN</td>
<td>57</td>
<td>2290</td>
<td>185-300</td>
<td>5,40</td>
</tr>
<tr>
<td>Graphene</td>
<td>4000</td>
<td>2250</td>
<td>2000-6000</td>
<td>41,42</td>
</tr>
<tr>
<td>PE polymer</td>
<td>0.24</td>
<td>1000</td>
<td>0.3-0.45</td>
<td>5</td>
</tr>
<tr>
<td>Air</td>
<td>0.024</td>
<td>1.225</td>
<td>0.024</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1. Thermal conductivities and mass density of the filler materials used in the simulation. For BN nanoparticles, the thermal conductivity used is smaller than the literature values which were reported for the in-plane thermal conductivity in BN nanosheets. For PE polymer, the thermal conductivity depends on the density.
a-l-particles. (e-r-n-he filler volume fraction for PE n-a-l-low-particles. As v-i-t-y can be increased to t-h-e volume fraction of the nanoparticles. n-a-o-b-d-e-c-i-

Figure 1. Computationally-generated microstructures for polymer nanocomposites filled with (a) 20 vol.% solid nanoparticles, (b) 40 vol.% solid nanoparticles, (c) 20 vol.% hollow nanoparticles, and (d) 40 vol.% hollow nanoparticles. (e) The effective thermal conductivity and (f) mass density as function of filler volume fraction for polymer nanocomposites filled with various solid and hollow nanoparticles.

Figure 1e shows the effective thermal conductivity as function of the filler volume fraction for PE nanocomposites filled with various nanoparticles. For all listed nanocomposites, the effective thermal conductivity increases with the volume fraction of the fillers for both the solid and hollow nanoparticles. For a filler material at a given V_f, the solid nanoparticles are more effective than the hollow nanoparticles in enhancing the thermal conductivity. For example, at a V_f of ~50%, the polymer nanocomposites filled with solid Ag, solid Al, solid Fe, solid Cu, solid Al_2O_3, solid AlN, and solid BN nanoparticles have a κ_{eff} of ~28 Wm^{-1}K^{-1}, ~14 Wm^{-1}K^{-1}, ~3.6 Wm^{-1}K^{-1}, ~20 Wm^{-1}K^{-1}, ~4.1 Wm^{-1}K^{-1}, ~22 Wm^{-1}K^{-1}, and ~5.0 Wm^{-1}K^{-1}, while their counterparts filled with corresponding hollow nanoparticles have a κ_{eff} of ~1.9 Wm^{-1}K^{-1}, ~1.2 Wm^{-1}K^{-1}, ~0.5 Wm^{-1}K^{-1}, ~1.7 Wm^{-1}K^{-1}, ~0.5 Wm^{-1}K^{-1}, ~1.4 Wm^{-1}K^{-1}, and ~0.6 Wm^{-1}K^{-1}, respectively (see Table 2).

However, the effective mass density of the PE nanocomposite is significantly increased by the solid nanoparticles compared to the hollow nanoparticles. As shown in Figure 1f, at a V_f of ~50%, the nanocomposites filled with solid Ag, solid Cu, and solid Fe nanoparticles respectively have a ρ_{eff} of ~5646 kg/m^3, ~4971 kg/m^3, and ~4374 kg/m^3, while their counterparts filled with hollow nanoparticles have a much lower ρ_{eff} of ~1246 kg/m^3, ~1135 kg/m^3, and ~1109 kg/m^3, respectively (see Table 2). More interestingly, the effective mass density of the polymer nanocomposites filled with hollow Al, hollow Al_2O_3, hollow AlN, and hollow BN even decreases with the volume fraction of the nanoparticles. More specifically, the effective mass density of the polymer nanocomposites can be reduced from ~1000 kg/m^3 to ~681 kg/m^3, ~756 kg/m^3, ~731 kg/m^3, and ~663 kg/m^3 when it is respectively filled with hollow Al, hollow Al_2O_3, hollow AlN, and hollow BN nanoparticles at a V_f of ~50% (see Table 2).

Figure 2a shows the mapping result of the κ_{eff} as function of the thermal conductivity of the filler material (κ_{filler}) and V_f for the polymer nanocomposites filled with hollow nanoparticles. The calculations in Fig. 1e are included in this more comprehensive mapping result. For example, for nanocomposites filled with 10 vol.% hollow AlN, 20 vol.% hollow Cu, 30 vol.% hollow Al, and 40 vol.% hollow Ag nanoparticles, which are marked on Fig. 2e, they have a κ_{eff} of ~0.31 Wm^{-1}K^{-1}, ~0.41 Wm^{-1}K^{-1}, ~0.54 Wm^{-1}K^{-1}, and ~0.91 Wm^{-1}K^{-1}, respectively, as indicated by the color bar. The κ_{eff} increases with both κ_{filler} and V_f. At $\kappa_{filler}=2000$ Wm^{-1}K^{-1} and V_f=50%, the effective thermal conductivity can be increased to ~4.8 Wm^{-1}K^{-1}. In contrast, Fig. 2b shows the mapping result for the nanocomposite filled with solid nanoparticles. The solid nanoparticles are indeed more effective in enhancing the κ_{eff} than their hollow counterparts. For example, at $\kappa_{filler}=2000$ Wm^{-1}K^{-1} and V_f=50%, the κ_{eff} can be enhanced to ~103 Wm^{-1}K^{-1} by the solid nanoparticles.
Table 2. Effect thermal conductivity and mass density for polymer nanocomposites filled with various solid, hollow, and graphene-wrapped hollow nanoparticles at a volume fraction of 50%.

<table>
<thead>
<tr>
<th>Nanoparticle</th>
<th>$V_f=50%$</th>
<th>Ag</th>
<th>Al</th>
<th>Fe</th>
<th>Cu</th>
<th>Al$_2$O</th>
<th>AlN</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>κ_{eff} (W m$^{-1}$ K$^{-1}$)</td>
<td>28</td>
<td>14</td>
<td>3.6</td>
<td>20</td>
<td>4.1</td>
<td>22</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>ρ_{eff} (kg/m3)</td>
<td>5646</td>
<td>1849</td>
<td>4374</td>
<td>4971</td>
<td>2380</td>
<td>2097</td>
<td>1663</td>
</tr>
<tr>
<td>Hollow</td>
<td>κ_{eff} (W m$^{-1}$ K$^{-1}$)</td>
<td>1.9</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.5</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>ρ_{eff} (kg/m3)</td>
<td>1246</td>
<td>681</td>
<td>1109</td>
<td>1135</td>
<td>756</td>
<td>731</td>
<td>663</td>
</tr>
<tr>
<td>Graphene-wrapped</td>
<td>κ_{eff} (W m$^{-1}$ K$^{-1}$)</td>
<td>~11</td>
<td>~11</td>
<td>~5</td>
<td>~5</td>
<td>~5</td>
<td>~5</td>
<td>~5</td>
</tr>
<tr>
<td></td>
<td>ρ_{eff} (kg/m3)</td>
<td>1290</td>
<td>817</td>
<td>1153</td>
<td>1196</td>
<td>877</td>
<td>847</td>
<td>789</td>
</tr>
</tbody>
</table>

Figure 2. The effective thermal conductivity as function of the volume fraction and the filler thermal conductivity for polymer nanocomposites filled with (a) hollow nanoparticles and (b) solid nanoparticles.

However, in order to achieve a specific thermal conductivity by filling different types of nanoparticles into the PE polymer, the nanocomposites filled with hollow nanoparticles are shown to require much less filler materials and hence show much lower mass density. For example, as shown in Figure 3a, for a PE nanocomposite with an effective thermal conductivity of ~1 W m$^{-1}$K$^{-1}$, the mass density is ~3566 kg/m3, ~1506 kg/m3, ~3206 kg/m3, and ~1614 kg/m3 when the nanocomposite is filled with solid Ag, solid Al, solid Cu, and solid AlN nanoparticles, respectively. However, their counterparts only show a mass density of ~1271 kg/m3, ~774 kg/m3, ~1156 kg/m3, and ~805 kg/m3 when filled with the corresponding hollow nanoparticles.

Furthermore, the materials cost in the nanocomposites filled with the hollow nanoparticles will also be much less. As shown in Figure 3b, the unit costs of the polymer nanocomposites filled with hollow Ag, hollow Al, hollow Cu, and hollow AlN nanoparticles are ~0.839 $/\text{cm}^2$, ~0.001 $/\text{cm}^2$, ~0.0069 $/\text{cm}^2$, and ~0.161 $/\text{cm}^2$, while the unit costs of their counterparts filled with solid nanoparticles are ~2.35 $/\text{cm}^2$, ~0.0019 $/\text{cm}^2$, ~0.019 $/\text{cm}^2$, and ~0.322 $/\text{cm}^2$, respectively. Therefore, the usage of hollow nanoparticles reduces the weight of the nanocomposite and the materials cost of the nanocomposite. However, the hollow nanoparticles might not yield sufficient enhancement of the effective thermal conductivity. For instance, by filling hollow nanoparticles such as Fe, Al$_2$O$_3$, and BN into the PE polymer, a target κ_{eff} of 1 W m$^{-1}$K$^{-1}$ may not be achieved unless denser PE polymer with higher thermal conductivity is used as the matrix.

In the light of the mapping result for the κ_{eff} as function of the V_f shown in Figure 2a, we propose a hierarchical architecture for the hollow nanoparticles. As shown in Figure 4, we suggest wrapping one graphene layer onto the shell of the hollow nanoparticle. This design is rationalized by the super-high thermal conductivity (~4000 W m$^{-1}$K$^{-1}$) of the graphene$^{[41,42]}$, which can be employed to possibly wrap the shell of a hollow nanoparticle$^{[43-45]}$. The technique of wrapping a graphene layer onto the shell of a nanoparticle has been used to improve the performances of batteries$^{[43-45]}$, and here we predict that it can be used to improve the effective thermal conductivity of the polymer nanocomposites.

4| Zhong-Hui Shen et al. | Composite Materials Research
Figure 3. For a PE nanocomposite with a targeted effective thermal conductivity of 1 Wm\(^{-1}\)K\(^{-1}\), (a) the mass density and (b) the unit cost of materials it has when it is filled with various solid and hollow nanoparticles. The inset Table of (b) lists the rough costs of different filler materials, which might change depending on the market.

Figure 4. The microstructure of a polymer nanocomposite filled with a double-layer nanoparticle where the outer layer is graphene.

It can be seen from Figure 5a that the effective thermal conductivity of the nanocomposite filled with graphene-wrapped hollow nanoparticles increases much faster with the volume fraction of the filler nanoparticles. At a \(V_f\) of 50\%, the effective thermal conductivity of the nanocomposite can be enhanced to \(\sim11\) Wm\(^{-1}\)K\(^{-1}\), which is about 10 times of their counterparts filled with hollow nanoparticles without a graphene layer. Meanwhile, this hierarchical architecture does not increase the effective mass density much. As shown in Figure 5b, the effective mass density of the nanocomposite at a \(V_f\) of 50\% is \(\sim1290\) kg/m\(^3\), \(\sim817\) kg/m\(^3\), \(\sim1153\) kg/m\(^3\), \(\sim1196\) kg/m\(^3\), \(\sim877\) kg/m\(^3\), \(\sim847\) kg/m\(^3\), and \(\sim789\) kg/m\(^3\) when filled with graphene-wrapped hollow Ag, Al, Fe, Cu, Al\(_2\)O\(_3\), AlN, and BN nanoparticles, respectively (see Table 2). These values are about \(\sim3.5\%\), \(\sim20.0\%\), \(\sim3.9\%\), \(\sim5.3\%\), \(\sim16.0\%\), \(\sim15.8\%\), and \(\sim19.0\%\) higher than their counterparts filled with corresponding hollow nanoparticles without wrapping graphene.

Figure 6a shows the comparison of the effective mass density between the nanocomposites filled with solid nanoparticles and graphene-wrapped hollow nanoparticles. It can be seen that a target \(k_{\text{eff}}\) of 1 Wm\(^{-1}\)K\(^{-1}\) now can be achieved by all listed filler materials. The effective mass densities of the nanocomposites filled with graphene-wrapped hollow nanoparticles are much lower than their counterparts filled with solid nanoparticles. For nanocomposites filled with heavy fillers such as Ag, Fe, and Cu, the effective mass density can be reduced by \(\sim70\%\) by using graphene-wrapped hollow nanoparticles rather than solid nanoparticles, while still preserving the same \(k_{\text{eff}}\) of 1 Wm\(^{-1}\)K\(^{-1}\). This is not only beneficial to the reduction of the weight and materials costs, but also beneficial to the preservation of the flexibility performances of the polymers which can easily be damaged by a high loading level\([46-50]\). As shown in Figure 6b, the \(V_f\) of the nanocomposites filled with graphene-wrapped hollow nanoparticles is universally reduced, compared with the counterpart in the nanocomposites filled with solid nanoparticles.
Figure 5. (a) The effective thermal conductivity and (b) mass density as function of filler volume fraction for polymer nanocomposites filled with graphene-wrapped hollow nanoparticles, compared with their counterparts without graphene layer.

Figure 6. For a PE nanocomposite with a targeted effective thermal conductivity of 1 W m⁻¹K⁻¹, (a) the mass density and (b) the filler volume fraction it has when it is filled with various solid and graphene-wrapped hollow nanoparticles.

Now turn to the underlying mechanisms of the advantages of using hollow nanoparticles and graphene-wrapped nanoparticles over the solid nanoparticles. We consider three nanocomposites, which are filled with solid nanoparticles, hollow nanoparticles, and graphene-wrapped hollow nanoparticles, respectively. The filler materials are same, e.g., Cu metal, and the sizes of the filler nanoparticles are assumed to be similar. The volume fraction of Cu metal in the three nanocomposites are set to be at the same value of 6%. While in the nanocomposite filled with solid nanoparticles the thermally conductive Cu metal concentrates at each solid particle, the Cu metal in the nanocomposite filled with hollow nanoparticles distributes on the surface of each hollow particle. Since the surface layer volume of the hollow particle is much lower than the whole volume of the solid particle, there must be more hollow particles in the same polymer. As a result, the probability of forming thermally conductive channels through surfaces connection of the hollow particles is increased, leading to the enhancement of the effective thermal conductivity. This can be understood from the comparison of the thermal energy flux distributions shown in Figure 7a-Figure 7b. By wrapping a more thermally conductive graphene layer on the surfaces of the hollow nanoparticles, the formation probability of heat conductive channels and hence the effective thermal conductivity will be further increased, as revealed in Figure 7c.

In above simulations, the strategy of adding hollow and graphene-wrapped hollow nanoparticles into the polymer to enhance the thermal conductivity and reduce the mass density is illustrated without considering the
interfacial thermal resistance (R_k). Figure 8a shows the parameterized study of R_k effects on the effective thermal conductivity for polymer nanocomposites filled with solid, hollow, and graphene-wrapped Cu hollow nanoparticles. For polymer nanocomposites filled with solid Cu and graphene-wrapped hollow Cu nanoparticles, R_k is important when it is greater than 10^{-10} m2 K/W, whereas it is important when $R_k > 10^{-6}$ m2 K/W for the polymer nanocomposite filled with hollow Cu nanoparticles. Specifically, the effective thermal conductivity can be decreased by the interfacial thermal resistance from 1.0 W m$^{-1}$ K$^{-1}$ to 0.19 W m$^{-1}$ K$^{-1}$, from 0.71 W m$^{-1}$ K$^{-1}$ to 0.16 W m$^{-1}$ K$^{-1}$, and from 0.48 W m$^{-1}$ K$^{-1}$ to 0.14 W m$^{-1}$ K$^{-1}$ for polymer nanocomposite filled with 25 vol.% graphene-wrapped hollow Cu nanoparticles, solid Cu nanoparticles, and hollow Cu nanoparticles, respectively. Therefore, the effective thermal conductivity predicted in this work should be lower when the interfacial thermal resistance is considered. In order to accurately predict the effective thermal conductivity as function of the microstructure, the knowledge of the interfacial thermal resistance is necessary. While it is challenging to measure the interfacial thermal resistance experimentally, it may be obtained via molecular dynamic simulations.$^{[51-53]}$

3. Conclusions

The effective thermal conductivity and effective mass density of the polymer nanocomposites filled with solid nanoparticles and hollow nanoparticles are computed. It is predicted that the usage of hollow nanoparticles rather than the solid nanoparticles as fillers can enhance the thermal conductivity but preserve the low mass density of the polymer nanocomposites. By wrapping a graphene layer onto the surface of the hollow nanoparticles, the effective thermal conductivity can be further significantly enhanced while still preserving a low mass density of the polymer nanocomposite. The underlying mechanism of this microstructure design and the quantitative effect of the interfacial thermal resistance are presented. The present work is expected to stimulate future experimental and theoretical efforts to design light-weight thermally conductive polymer nanocomposites.

Figure 7. Thermal energy flux distributions for polymer nanocomposites filled with (a) solid Cu nanoparticles, (b) hollow Cu nanoparticles, and (c) graphene-wrapped hollow Cu nanoparticles. The volume fractions of Cu metal for these three polymer nanocomposites are at the same value of 6%. Due to the introduction of the hollow structure, the volume fractions of the hollow nanoparticles are ~30%.

Figure 8. Effect of the interfacial thermal resistance on the effective thermal conductivity for PE nanocomposites filled with 25 vol.% solid Cu nanoparticles, hollow Cu nanoparticles, and graphene-wrapped hollow Cu nanoparticles.
4. Methods

The heat conduction equation in the polymer nanocomposite can be written as

\[
\frac{\partial}{\partial t} \left(k_{ij}(x) \frac{\partial T(x)}{\partial x_j} \right) + q(x) = \rho(x) c_p(x) \frac{\partial T(x)}{\partial t} ,
\]

where \(k_{ij}(x) \), \(T(x) \), \(\rho(x) \), and \(c_p(x) \) represent the spatial-dependent thermal conductivity tensor, temperature, the mass density, and the specific heat capacity, respectively. Those spatial-dependent material properties such as \(k_{ij}(x) \), \(T(x) \), and \(c_p(x) \) are determined by the micro-structure of the polymer nanocomposite specified by a phase-field variable. The internal heat source of the material is represented by \(q(x) \). Eq.(1) can be solved using the spectral iterative perturbation method which was developed in previous work \(^5\) or using the finite element method via the COMSOL software. When incorporating the interfacial thermal resistance, slit boundary conditions are applied at the heterointerfaces between phase A and phase B, i.e.,

\[
-n_A \cdot (-k_A^{AB} \nabla T_A) = \frac{T_B - T_A}{R_{\text{k}}} ,
\]

\[
-n_B \cdot (-k_B^{AB} \nabla T_B) = \frac{T_A - T_B}{R_{\text{k}}} ,
\]

where \(n_A \) and \(n_B \) represent the normal directions of the interface pointing to phase A and phase B, respectively. The variable \(T_A \) and \(T_B \) represent the temperature at the two boundaries of the heterointerfaces, and \(k_A \) and \(k_B \) represent the thermal conductivity of phase A and phase B, respectively. Once the temperature distribution is solved, the heat flux density that flows through a unit area per unit time can be determined from the Fourier’s law, i.e.,

\[
J_i = -k_{ij}(x) \frac{\partial T(x)}{\partial x_j} .
\]

The effective thermal conductivity tensor \(k_{ij}^{\text{eff}} \) of the polymer nanocomposite can then be determined from Eq. (3) by solving

\[
\langle J_i \rangle = -k_{ij}^{\text{eff}} \langle \frac{\partial T(x)}{\partial x_j} \rangle ,
\]

where \(\langle \cdot \rangle \) represents the average property per volume.

Acknowledgements

J. J. Wang and L. Q. Chen are partially supported by the US Air Force Office of Scientific Research through tasks (FA9550-17-1-0318) and by the Hamer Professorship. W Y Zhou gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No.51577154), the Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology (No. JZK201301, KF20151111).

References

914-944.

